• Title/Summary/Keyword: shape retrieval

Search Result 230, Processing Time 0.022 seconds

An Identification of the Image Retrieval Domain from the Perspective of Library and Information Science with Author Co-citation and Author Bibliographic Coupling Analyses

  • Yoon, JungWon;Chung, EunKyung;Byun, Jihye
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.49 no.4
    • /
    • pp.99-124
    • /
    • 2015
  • As the improvement of digital technologies increases the use of images from various fields, the domain of image retrieval has evolved and become a growing topic of research in the Library and Information Science field. The purpose of this study is to identify the knowledge structure of the image retrieval domain by using the author co-citation analysis and author bibliographic coupling as analytical tools in order to understand the domain's past and present. The data set for this study is 245 articles with 8,031 cited articles in the field of image retrieval from 1998 to 2013, from the Web of Science citation database. According to the results of author co-citation analysis for the past of the image retrieval domain, our findings demonstrate that the intellectual structure of image retrieval in the LIS field consists of predominantly user-oriented approaches, but also includes some areas influenced by the CBIR area. More specifically, the user-oriented approach contains six specific areas which include image needs, information seeking, image needs and search behavior, image indexing and access, indexing of image collection, and web image search. On the other hand, for CBIR approaches, it contains feature-based image indexing, shape-based indexing, and IR & CBIR. The recent trends of image retrieval based on the results from author bibliographic coupling analysis show that the domain is expanding to emerging areas of medical images, multimedia, ontology- and tag-based indexing which thus reflects a new paradigm of information environment.

Algorithms for Indexing and Integrating MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 인덱싱 및 결합 알고리즘)

  • Song, Chi-Ill;Nang, Jong-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a new indexing mechanism for MPEG-7 visual descriptors, especially Dominant Color and Contour Shape descriptors, that guarantees an efficient similarity search for the multimedia database whose visual meta-data are represented with MPEG-7. Since the similarity metric used in the Dominant Color descriptor is based on Gaussian mixture model, the descriptor itself could be transform into a color histogram in which the distribution of the color values follows the Gauss distribution. Then, the transformed Dominant Color descriptor (i.e., the color histogram) is indexed in the proposed indexing mechanism. For the indexing of Contour Shape descriptor, we have used a two-pass algorithm. That is, in the first pass, since the similarity of two shapes could be roughly measured with the global parameters such as eccentricity and circularity used in Contour shape descriptor, the dissimilar image objects could be excluded with these global parameters first. Then, the similarities between the query and remaining image objects are measured with the peak parameters of Contour Shape descriptor. This two-pass approach helps to reduce the computational resources to measure the similarity of image objects using Contour Shape descriptor. This paper also proposes two integration schemes of visual descriptors for an efficient retrieval of multimedia database. The one is to use the weight of descriptor as a yardstick to determine the number of selected similar image objects with respect to that descriptor, and the other is to use the weight as the degree of importance of the descriptor in the global similarity measurement. Experimental results show that the proposed indexing and integration schemes produce a remarkable speed-up comparing to the exact similarity search, although there are some losses in the accuracy because of the approximated computation in indexing. The proposed schemes could be used to build a multimedia database represented in MPEG-7 that guarantees an efficient retrieval.

Shape Descriptor for 3D Foot Pose Estimation (3차원 발 자세 추정을 위한 새로운 형상 기술자)

  • Song, Ho-Geun;Kang, Ki-Hyun;Jung, Da-Woon;Yoon, Yong-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.469-478
    • /
    • 2010
  • This paper proposes the effective shape descriptor for 3D foot pose estimation. To reduce processing time, silhouette-based foot image database is built and meta information which involves the 3D pose of the foot is appended to the database. And we proposed a modified Centroid Contour Distance whose size of the feature space is small and performance of pose estimation is better than the others. In order to analyze performance of the descriptor, we evaluate time and spatial complexity with retrieval accuracy, and then compare with the previous methods. Experimental results show that the proposed descriptor is more effective than the previous methods on feature extraction time and pose estimation accuracy.

Implementation on the Filters Using Color and Intensity for the Content based Image Retrieval (내용기반 영상검색을 위한 색상과 휘도 정보를 이용한 필터 구현)

  • Noh, Jin-Soo;Baek, Chang-Hui;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.122-129
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the content-based image retrieval(CBIR) method based on an efficient combination of a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. Shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(Color histogram, Hu invariant moments) are combined and then measured precision. As a experiment result using DB that was supported by http://www.freefoto.com, the proposed image search engine has 93% precision and can apply successfully image retrieval applications.

A Implementation of the Feature-based Hierarchical Image Retrieval System (특징기반 계층적 영상 검색 시스템의 구현)

  • 김봉기;김홍준;김창근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.2
    • /
    • pp.60-70
    • /
    • 2000
  • As a result of remarkable developments in computer technology, the image retrieval system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we implemented the Hierarchical Image Retrieval System for content-based image data retrieval. At the first level, to get color information, with improving the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants(IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images And we could obtain the more improved results through the comparative test with other methods.

  • PDF

Content Based Image Retrieval using 8AB Representation of Spatial Relations between Objects (객체 위치 관계의 8AB 표현을 이용한 내용 기반 영상 검색 기법)

  • Joo, Chan-Hye;Chung, Chin-Wan;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.304-314
    • /
    • 2007
  • Content Based Image Retrieval (CBIR) is to store and retrieve images using the feature description of image contents. In order to support more accurate image retrieval, it has become necessary to develop features that can effectively describe image contents. The commonly used low-level features, such as color, texture, and shape features may not be directly mapped to human visual perception. In addition, such features cannot effectively describe a single image that contains multiple objects of interest. As a result, the research on feature descriptions has shifted to focus on higher-level features, which support representations more similar to human visual perception like spatial relationships between objects. Nevertheless, the prior works on the representation of spatial relations still have shortcomings, particularly with respect to supporting rotational invariance, Rotational invariance is a key requirement for a feature description to provide robust and accurate retrieval of images. This paper proposes a high-level feature named 8AB (8 Angular Bin) that effectively describes the spatial relations of objects in an image while providing rotational invariance. With this representation, a similarity calculation and a retrieval technique are also proposed. In addition, this paper proposes a search-space pruning technique, which supports efficient image retrieval using the 8AB feature. The 8AB feature is incorporated into a CBIR system, and the experiments over both real and synthetic image sets show the effectiveness of 8AB as a high-level feature and the efficiency of the pruning technique.

A Feature -Based Word Spotting for Content-Based Retrieval of Machine-Printed English Document Images (내용기반의 인쇄체 영문 문서 영상 검색을 위한 특징 기반 단어 검색)

  • Jeong, Gyu-Sik;Gwon, Hui-Ung
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1204-1218
    • /
    • 1999
  • 문서영상 검색을 위한 디지털도서관의 대부분은 논문제목과/또는 논문요약으로부터 만들어진 색인에 근거한 제한적인 검색기능을 제공하고 있다. 본 논문에서는 영문 문서영상전체에 대한 검색을 위한 단어 영상 형태 특징기반의 단어검색시스템을 제안한다. 본 논문에서는 검색의 효율성과 정확도를 높이기 위해 1) 기존의 단어검색시스템에서 사용된 특징들을 조합하여 사용하며, 2) 특징의 개수 및 위치뿐만 아니라 특징들의 순서를 포함하여 매칭하는 방법을 사용하며, 3) 특징비교에 의해 검색결과를 얻은 후에 여과목적으로 문자인식을 부분적으로 적용하는 2단계의 검색방법을 사용한다. 제안된 시스템의 동작은 다음과 같다. 문서 영상이 주어지면, 문서 영상 구조가 분석되고 단어 영역들의 조합으로 분할된다. 단어 영상의 특징들이 추출되어 저장된다. 사용자의 텍스트 질의가 주어지면 이에 대응되는 단어 영상이 만들어지며 이로부터 영상특징이 추출된다. 이 참조 특징과 저장된 특징들과 비교하여 유사한 단어를 검색하게 된다. 제안된 시스템은 IBM-PC를 이용한 웹 환경에서 구축되었으며, 영문 문서영상을 이용하여 실험이 수행되었다. 실험결과는 본 논문에서 제안하는 방법들의 유효성을 보여주고 있다. Abstract Most existing digital libraries for document image retrieval provide a limited retrieval service due to their indexing from document titles and/or the content of document abstracts. This paper proposes a word spotting system for full English document image retrieval based on word image shape features. In order to improve not only the efficiency but also the precision of a retrieval system, we develop the system by 1) using a combination of the holistic features which have been used in the existing word spotting systems, 2) performing image matching by comparing the order of features in a word in addition to the number of features and their positions, and 3) adopting 2 stage retrieval strategies by obtaining retrieval results by image feature matching and applying OCR(Optical Charater Recognition) partly to the results for filtering purpose. The proposed system operates as follows: given a document image, its structure is analyzed and is segmented into a set of word regions. Then, word shape features are extracted and stored. Given a user's query with text, features are extracted after its corresponding word image is generated. This reference model is compared with the stored features to find out similar words. The proposed system is implemented with IBM-PC in a web environment and its experiments are performed with English document images. Experimental results show the effectiveness of the proposed methods.

Similar Satellite Image Search using SIFT (SIFT를 이용한 유사 위성 영상 검색)

  • Kim, Jung-Bum;Chung, Chin-Wan;Kim, Deok-Hwan;Kim, Sang-Hee;Lee, Seok-Lyong
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.379-390
    • /
    • 2008
  • Due to the increase of the amount of image data, the demand for searching similar images is continuously increasing. Therefore, many researches about the content-based image retrieval (CBIR) are conducted to search similar images effectively. In CBIR, it uses image contents such as color, shape, and texture for more effective retrieval. However, when we apply CBIR to satellite images which are complex and pose the difficulty in using color information, we can have trouble to get a good retrieval result. Since it is difficult to use color information of satellite images, we need image segmentation to use shape information by separating the shape of an object in a satellite image. However, because satellite images are complex, image segmentation is hard and poor image segmentation results in poor retrieval results. In this paper, we propose a new approach to search similar images without image segmentation for satellite images. To do a similarity search without image segmentation, we define a similarity of an image by considering SIFT keypoint descriptors which doesn't require image segmentation. Experimental results show that the proposed approach more effectively searches similar satellite images which are complex and pose the difficulty in using color information.

Content Based Image Retrieval Based on A Novel Image Block Technique Combining Color and Edge Features

  • Kwon, Goo-Rak;Haoming, Zou;Park, Sei-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • In this paper we propose the CBIR algorithm which is based on a novel image block method that combined both color and edge feature. The main drawback of global histogram representation is dependent of the color without spatial or shape information, a new image block method that divided the image to 8 related blocks which contained more information of the image is utilized to extract image feature. Based on these 8 blocks, histogram equalization and edge detection techniques are also used for image retrieval. The experimental results show that the proposed image block method has better ability of characterizing the image contents than traditional block method and can perform the retrieval system efficiently.

Content-based Image Retrieval using an Improved Chain Code and Hidden Markov Model (개선된 chain code와 HMM을 이용한 내용기반 영상검색)

  • 조완현;이승희;박순영;박종현
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.375-378
    • /
    • 2000
  • In this paper, we propose a novo] content-based image retrieval system using both Hidden Markov Model(HMM) and an improved chain code. The Gaussian Mixture Model(GMM) is applied to statistically model a color information of the image, and Deterministic Annealing EM(DAEM) algorithm is employed to estimate the parameters of GMM. This result is used to segment the given image. We use an improved chain code, which is invariant to rotation, translation and scale, to extract the feature vectors of the shape for each image in the database. These are stored together in the database with each HMM whose parameters (A, B, $\pi$) are estimated by Baum-Welch algorithm. With respect to feature vector obtained in the same way from the query image, a occurring probability of each image is computed by using the forward algorithm of HMM. We use these probabilities for the image retrieval and present the highest similarity images based on these probabilities.

  • PDF