• Title/Summary/Keyword: shape optimum design

Search Result 651, Processing Time 0.022 seconds

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

A Study on the Formative Characteristics in Korean Style Fashion Design (한국적 패션디자인에 나타난 조형적 특성)

  • Kim, Sae-Bom;Je, Gi-Yeon;Park, In-Jo;Ye, Ji-Young;Lee, Kyoung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.11 no.1
    • /
    • pp.24-32
    • /
    • 2009
  • The purpose of this study is to understand characteristic of expression in Korean style fashion design and investigated Korean style fashion design's deployment and design idea method as well as its esthetic value. The photographs for the research were selected from fashion collections during S/S 2003-F/W 2007 by four specialists in the department of textile and then analyzed with 288 final data. The results were as followings. First, the characteristics of design expression in Korean style fashion design were formation by separating partial shape from the whole, formation by shape's separation and repetition, and connecting formation by combination and transformation of parts. In the case of color, they were direct expression, contrasting formative expression, and gradual changing expression. In the case of pattern, they were the methods of filling, filling & emptying, and partial filling. Second, the deployments of Korean style fashion design were adding modern elements to traditional things, combining traditional elements and modern things, and adding traditional elements to modern things. The third, Korean style fashion design's idea methods were weaving, snatching, adding, and changing. Fourth, it was shown that esthetic values of Korean style fashion design were the interactive organism by building organic relationship, the optimum expressing beauty with minimum elements, the palpitation having dynamics and rhythmical beauty.

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF

Plasto-plastic Finite Element Analysis for the Parametric Process Design of the Tension Leveller(2) -Full Set Analysis (금속인장교정기의 공정변수 설계를 위한 탄소성 유한요소해석 (2)-전체공정 해석)

  • Lee, H.W.;Huh, H.;Park, S.R.
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.147-154
    • /
    • 2002
  • The tension levelling Process is Performed to elongate the strip plastically In combination of tensile and bending strain so that all longitudinal fibers In the strip have an approximately equal amount ofn length and undesirable strip shapes are corrected to the flat shape. Thus paper is concerned with a simulation of the tension levelling process based on the analysis of tile unit model for the tension leveller. Analysis technique such as the sequential analysis of the unit model is suggested and verified with the assembly analysis of the unit model for the effective arts economic analysis of the full set of the tension leveller. Analysis of the full tension levelling Process using sequential unit models Is carried out for steel strips with the shape defect and provides the effect of the intermesh and optimum amount of the intermesh in tension levelling process.

The Optimal Design of Air Bearing Sliders of Optical Disk Drives by Using Simulated Annealing Technique (SA 기법을 이용한 광디스크 드라이브 공기베어링 슬라이더의 최적설계)

  • Chang, Hyuk;Kim, Hyun-Ki;Kim, Kwang-Sun;Rim, Kyung-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.316-321
    • /
    • 2001
  • The optical storage device has recently experienced significant improvement, especially for the aspects of high capacity and fast transfer rate. However, it is necessary to study a new shape of air bearing surface for the rotary type actuator because the optical storage device has the lower access time than that of HDD (Hard Disk Drives). In this study, we proposed the air bearing shape by using SA (Simulated Annealing) algorithm which is very effective to achieve the global optimum instead of many local optimums. The objective of optimization is to minimize the deviation in flying height from a target value 100nm. In addition, the pitch and roll angle should be maintained within the operation limits.

  • PDF

Measuring of Noise Character on Cogged Belt Using Order Tracking and Design of Belt Shape (Order Tracking 을 이용한 Cogged belt 소음특성의 측정 및 구조변경 설계)

  • Koo, Jung-Tae;Kang, Jong-Jin;Jeong, Weui-Bong;Ahn, Se-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1049-1053
    • /
    • 2007
  • Cogged belts get unpleasant noise when the speed is up and down. This paper investigates optimum condition for reducing a belt noise that is caused by a belt shape and properties of the material. Order tracking is used analyze belt noise. First step, the pitch length exerts an important influence on the order noise. Second step, material of belt is also important for reducing noise level. The experimental results showed the modified form and material of belts to reduce the noise.

  • PDF

Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History (변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes (임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Laser Processing for Manufacturing Styrofoam Pattern (주물용 스티로폼 목형 제작을 위한 레이저 가공 공정 개발)

  • 강경호;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1085-1088
    • /
    • 2001
  • The process of styrofoam pattern that has been used for material of press die pattern depends chiefly on handwork. Laser manufacturing system developed to increase precision and efficiency of process that is also able to convert the design easily. Applying the RP(rapid prototyping) concept reversely, the unnecessary part of section is vapored away by heat source of laser beam after converting 3-D CAD model into cross-sectional shape information. Laser beam is line-scanned in plane specimens to measure the depth and width of cut, surface roughness, cross-sectional shape as converting laser power, scanning speed, cutting gas pressure. With these basic data, plane surface, inclined surface, hole, outer contour trimming process is experimented and optimum condition are obtained. In plane and inclined surface experiments, 15W laser power and 50mm/s scanning speed make superior processing property and 30W, 10mm/s make processing efficiency increase in trimming process. With these results, simple patterns were manufactured and the possibility of applying laser manufacturing system to styrofoam pattern was convinced.

  • PDF

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.