• 제목/요약/키워드: shape optimum design

검색결과 649건 처리시간 0.03초

A study on minimum weight design of vertical corrugated bulkheads for chemical tankers

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.180-187
    • /
    • 2018
  • Corrugated bulkhead has been adopted for cargo tank bulkheads of commercial vessels such as bulk carriers, product oil carriers and chemical tankers. It is considered that corrugated bulkhead is a preferred structural solution, compared to the flat stiffened bulkhead, due to several advantages such as lower mass, easier maintenance and smaller corrosion problems. Many researches to find the optimum shape of corrugated bulkhead have been mostly carried out for bulk carriers. Compared to corrugated bulkheads of bulk carriers, ones of chemical tankers are more complicated since they are composed of transverse and longitudinal bulkheads, and they are made of higher priced materials. The purpose of this study is the development of minimum weight design method for corrugated bulkhead of chemical tankers. Evolution strategy is applied as an optimization technique. It has been verified from many researches that evolution strategy searches global optimum point prominently by using multi-individual searching technique. Multi-individual searching methods need excessive time if they connect to 3-D finite element model for repetitive structural analyses. In order to resolve this issue, 2-D beam element connected to deck and lower stool is substituted for a corrugated structure in this study. To verify the reliability of the structural responses by idealized 2-D beam model, they have been compared with ones by 3-D finite element model. In this study, optimum design for corrugated bulkhead of 30 K chemical tanker has been carried out, and the results by developed optimum design program have been compared with design data of existing ship. It is found out that optimum design is about 9% lighter than one of existing ship.

Composite insulator의 금구류 형상변화에 따른 전계특성 (Electric simulation of composite insulator with aspect of metal)

  • 우병철;강동필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1443-1445
    • /
    • 1997
  • This paper presents an analysing method to find out an optimum metal shape for insulation strength of SCI(Silicone Composite Insulator). Using finite element method, the interested parameters of the configuration such as a aspect of metal/silicone composite and a material properties are investigated and derived a thread of optimum design parameters.

  • PDF

코안다효과를 이용한 제진기 스크린의 최적설계를 위한 수치적 연구 (A Numerical Study for Optimum Design of Dust Separator Screen Based on Coanda Effect)

  • 윤성민;김용선;신희재;고상철
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.177-185
    • /
    • 2018
  • There is a need to study dust separator screens with good drainage efficiency while effectively filtering suspended solids and other contaminants entering the intake pumping station, the drainage pumping station and the mediation pumping station, the cooling water inlet of the power plant, and the like. In this paper, Numerical studies were conducted for the optimal design of the dust separator screen using the Coanda effect. The shape of the dust separator screen is important, such as the right curvature radius $R_1$ at the top of the dust separator screen and the left curvature radius $R_2$ at the top, h is the height difference and shape between the screen and the accelerating plate, and ${\theta}$ is the inclination angle of the screen. A total of 4 shape factors were set and the effects of Coanda and drainage performance of each element were compared and analyzed, the optimum length and size of each shape element were derived by classifying the shape elements into direct and indirect influences. Finally, it was possible to effectively filter foreign matter by narrowing the screen spacing, and the drainage performance was analyzed and optimized through numerical studies of dust separator screen.

해상풍력발전기 자켓 지지구조물의 최적설계 및 신뢰성해석 (Design Optimization and Reliability Analysis of Jacket Support Structure for 5-MW Offshore Wind Turbine)

  • 이지현;김수영;김명현;신성철;이연승
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.218-226
    • /
    • 2014
  • Since the support structure of an offshore wind turbine has to withstand severe environmental loads such as wind, wave, and seismic loads during its entire service life, the need for a robust and reliable design increases, along with the need for a cost effective design. In addition, a robust and reliable support structure contributes to the high availability of a wind turbine and low maintenance costs. From this point of view, this paper presents a design process that includes design optimization and reliability analysis. First, the jacket structure of the NREL 5-MW offshore wind turbine is optimized to minimize the weight and stresses, while satisfying the design requirements. Second, the reliability of the optimum design is evaluated and compared with that of the initial design. Although the present study results in a new optimum shape for a jacket support structure with reduced weight and increased reliability, the authors suggest that the optimum design has to be accompanied by a reliability analysis during the design process, as well as reliability based design optimization if needed.

고온초전도 테이프를 이용한 다단 전류 도입선의 최적설계 (Optimal Design of Multi-Step Current Leads Using HTS Tapes)

  • 김민수;나필선;설승윤
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.84-88
    • /
    • 2001
  • The optimum cross-sectional area Profile of gas-cooled high-temperature superconductor (HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant safety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-step HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-step current leads are discussed.

  • PDF

횡류수차 노즐형상이 성능과 내부유동에 미치는 영향 (Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine)

  • 최영도;임재익;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권4호
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Application of Surrogate Modeling to Design of A Compressor Blade to Optimize Stacking and Thickness

  • Samad, Abdus;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.1-12
    • /
    • 2009
  • Surrogate modeling is applied to a compressor blade shape optimization to modify its stacking line and thickness to enhance adiabatic efficiency and total pressure ratio. Six design variables are defined by parametric curves and three objectives; efficiency, total pressure and a combined objective of efficiency and total pressure are considered to enhance the performance of compressor blade. Latin hypercube sampling of design of experiments is used to generate 55 designs within design space constituted by the lower and upper limits of variables. Optimum designs are found by formulating a PRESS (predicted error sum of squares) based averaging (PBA) surrogate model with the help of a gradient based optimization algorithm. The optimum designs using the current variables show that, to optimize the performance of turbomachinery blade, the adiabatic efficiency objective is improved substantially while total pressure ratio objective is increased a very small amount. The multi-objective optimization shows that the efficiency can be increased with the less compensation of total pressure reduction or both objectives can be increased simultaneously.

반응표면법과 유한요소법을 이용한 라인-스타트 영구 자석 전동기의 최대토크밀도와 최소전류밀도을 위한 최적설계 (Optimum Design Criteria for Maximum Torque Density & Minimum Current Density of a Line-Start Permanent-Magnet Motor using Response Surface Methodology & Finite Element Method)

  • 장순명;전명진;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1055-1056
    • /
    • 2011
  • This paper deals with optimum design criteria for maximum torque density & minimum current density of a single phase line-start permanent-magnet motor (LSPMM) using RSM (Response Surface Methodology) & FEM (Finite Element Method). The focus of this paper is to find a design solution through the comparison of torque density and minimum current density resulting from rotor shape variations. And then, a central composite design (CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계 (Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM)

  • 김영현;이중호;김남훈;구본삼;김찬희
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.549-554
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계 (Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM)

  • 김영현;윤태원;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.414.1_415.1
    • /
    • 2009
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF