• 제목/요약/키워드: shape of squirrel cage rotor

검색결과 12건 처리시간 0.024초

농형 유도전동기의 회전자 형상과 단면적 변화에 따른 토크-스피드 곡선 비교 (Comparison of Torque-Speed Curve according to the Changes in Cross-Sectional Area and Shape of Squirrel Cage Rotor of Induction Motor)

  • 이진석;이하정;박관수
    • 한국자기학회지
    • /
    • 제26권2호
    • /
    • pp.67-69
    • /
    • 2016
  • 최근 중국의 희토류 자석 생산 독점과 수출 규제로 인해 희토류 자석의 가격이 급등하였다. 이러한 경제적인 문제로 인해, 희토류 자석을 사용하지 않는 유도전동기의 연구가 활발히 이루어지고 있다. 이 논문에서는 유도전동기의 토크를 계산하고, 농형 유도전동기의 회전자 단면적과 저항에 관한 상관관계를 연구하였다. 또한, 회전자의 단면적이 같고 형상이 다를 경우, 회전자의 누설 리액턴스와 토크의 상관관계에 대해 분석하여 농형 유도전동기를 개선하고자 하였다.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권6호
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

회전자 형상에 따른 유도발전기 전압강하에 대한 연구 (A Study on the Voltage Drop of Induction Generator along the Rotor Shape)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.

농형유도전동기(籠型誘導電動機)의 회전자(回轉子) 슬롯 형상(形狀)에 따른 자속밀도(磁束密度) 해석(解析) (The analysis on magnetic flux by the rotor slot of Squirrel-cage induction motor)

  • 오영수;이은웅;이동주;문제연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.299-301
    • /
    • 1998
  • The torque characteristic of an induction motor is affected greatly by the slot shape at which the conductors of the rotor are located. In this paper, the three analysis model; general type, deep slot type, double squirrel-cage type, of which the slot shapes are different, were analyzed by FEM at no load, at rated load, and at standstill respectively. The flux distribution and air-gap flux density were also obtained. From the above result, it was confirmed that the analysis models of deep slot and double squirrel-cage had more desirable characteristics than those of general squirrel-cage.

  • PDF

유한요소해석을 이용한 영구자석매입형 유도성기동 동기전동기의 조립후 착자시스템 설계 (Design of the Magnetizing System which is used for Magnetizing the NdFeB Magnet in a Squirrel Cage Rotor)

  • 이철규;권병일;김병택;우경일;양병렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.404-406
    • /
    • 2001
  • This paper is about designing the magnetizing system which is used for magnetizing the NdFeB magnet in a squirrel cage rotor. It propose the shape of the magnetizing yoke, the number of coil turn and the capacitor discharging circuit parameter. In case of magnetizing the NdFeB magnet assembled with a squirrel cage rotor, the eddy current which is produced during magnetizing becomes a disturbance in magnetizing NdFeB magnet. Hence in this paper, we try to design optimized magnetizing system with eddy current considered by FEM(Finite Element Method).

  • PDF

유도기 효율향상을 위한 회전자슬롯 형상최적화 (Shape Design of Induction Motors for Efficiency Improvement)

  • 곽인구;이향범;박일한;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.929-931
    • /
    • 1993
  • The design sensitivity analysis based on the finite element method is presented for the eddy current problem with a voltage source. Since, in this problem, the complex variable is used as the state variable, new approach to the sensitivity calculation for the complex variable system is required. Its result is applied to the design of the rotor slot shape of squirrel cage induction motor. As a analysis model, only one slot pitch of rotor is analyzed by using a Periodic boundary condition. The use of this minimal modelling method leads to much saving of calculation time. The design objective is to obtain the desired slip-torque characteristic. Because the shape of rotor slot has much influence on the slip torque characteristic, the design variables are taken on the interface shape between rotor core and rotor bar. The initial shape of rotor slot is the trapezoidal type with rounding corners. The obtained final shape is quite similar to the double squirrel cage type.

  • PDF

반응표면법을 이용한 전기자동차 구동용 유도전동기의 회전자 슬롯형상 최적설계 (Optimal Design of Induction Motor Rotor Slot Shape for Electric Vehicle by Response Surface Method)

  • 전경원;한성진
    • 조명전기설비학회논문지
    • /
    • 제25권11호
    • /
    • pp.58-66
    • /
    • 2011
  • In this paper, the starting torque and efficiency characteristics of the induction motor (IM) for the electric vehicle (EV) are improved by changing the slot shapes of squirrel cage. The initial model of the induction motor is designed by the loading distribution method (LDM), and then the rotor with squirrel cage of NEMA class A is selected to optimize the slot shape by response surface method(RSM). The design variables of rotor slot shape are obtained by the RSM. Starting torque and efficiency were calculated by the equivalent circuit method. As a result, starting torque and efficiency of the optimized model shows good performance through whole-speed range.

심구 또는 이중 농형 회전자를 가진 유도기의 전동 또는 발전 운전시 특성 해석 (Characteristics Analysis for Motor or Generator Operating of Induction Machine with Deep or Double Cage Rotor)

  • 김종겸
    • 신재생에너지
    • /
    • 제10권4호
    • /
    • pp.3-8
    • /
    • 2014
  • Both of induction generator and synchronous generator is available in the hydroelectric power plant. If the output of the power station is large, the synchronous generator is mainly used but when its output is low, the induction generator is often used. If the output capacity is small, there is a case in which induction motor is used as a generator. Torque at rated operation and start of the induction motor is different depending on the shape of the rotor. Small and medium-sized squirrel-cage induction motor is used primarily double cage rotor or deep bar. In this study, we attempt to interpret characteristics for double cage rotor or deep bar that occur when operating in the induction generator based on the parameters that have been designed and manufactured as an induction motor.

PSCAD/EMTDC를 이용한 계통 연계 풍력 유도 발전기의 운전 특성에 관한 연구 (A Study on Operational Characteristics of Wind Turbine Induction Generators Interconnected with Distribution Networks Using PSCAD/EMTDC)

  • 장성일;정종찬;김광호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권12호
    • /
    • pp.704-713
    • /
    • 2002
  • This paper describes operational characteristics of wind turbine induction generators interconnected with distribution networks using PSCAD/EMTDC. Due to the simple and durable structure, induction generators are the most common type used in wind Power generation. Generally, induction generators are classified into two groups according to the shape of rotor, one is squirrel-cage type and the other is wound-rotor type. In this study, we simulate the start-up and the output variation of generators interconnected with distribution networks and compare the operational characteristics of squirrel -cage type and wound-rotor type induction generators located in the unfaulted distribution lines about the disturbance occurred on the associated distribution feeders emanated from the substation to which wind turbine generator is connected. In order to obtain the realistic results, we use the radial distribution network of IEEE 13-bus model.

Steady-State Current Characteristics for Squirrel Cage Induction Motor according to Design Variables of Rotor Bars using Time Difference Finite Element Analysis

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.104-108
    • /
    • 2017
  • Induction motors have wide applicability in many fields, both in industrial sectors and households, for their advantages of a high efficiency and robust structure. The introduction of power-source-containing harmonics into the induction motor winding lowers its efficiency and increases its temperature, greatly affecting its operation characteristics. In this study, we performed an electromagnetic field analysis using the time-difference finite-element method with the purpose of analyzing the steady-state current characteristics of an induction motor. Additionally, we calculated the steady-state current with a method combining an electromagnetic field equation and a circuit equation. In the electromagnetic field analysis, the nonlinearity was taken into account using the Newton-Raphson method, and a backward time-difference method was employed for the time derivative term. Then, we compared the steady-state current of the induction motor obtained by calculation with the experimentally measured values, thus validating the proposed algorithm. Furthermore, we analyzed the impacts of the shape and material of the rotor conductor bar of the induction motor on the steady-state current of the main winding.