The purpose of this study was to classify women's face types by visual distinction and to analyze the measurement of face types. A survey was conducted by subjects of 167 women's college students in Kwangju City and Chonnam area. Data were analyzed by Frequencies, Mean, one way ANOVA and Ducan's Multiple Range Test. The major results were as followed ; ·Women's face types were classified by 7 types and there were oblong shape(28.3%), egg shape(25.7%), round shape(23.9%), square shape(12.4%), inverted triangle shape(5.3%), diamond shape(3.5%), triangle shape(0.8%) in the subjects. ·From the measurements of the women's face, index of face length to face breadth was 1.38, it means that the index was different from the other refferences. And the lower face length was longer than the upper and the middle face lengths. ·Differences From those measurements like forehead breadth, face length/bizigion breath(p〈.001), bizigion breadth, bignathion slopper, stature(p〈.01) and trichion breadth, tragion-menton length(p〈.05) were significant in the classified face types.
The purpose of this study was to research on facial shape to suggest a quantified data for the domestic apparel and beauty industry. Conducted a measurement research of 278 female college students, We took the photographs of front view and lateral view of the subjects by digital camera and obtained the 69 measurements through the facial measurement program. 264 ,subjects' measurement data were analyzed by various statistical methods such as descriptive analysis, factor analysis and cluster analysis. Using the 69 measurement items,4 factors were selected as key factors for the factor analysis of facial shape, the factors are: \circled1 Front face height \circled2 Side face radial length \circled3 Front face breadth \circled4 Ear height and Gnathion radial length. We categorized the facial shape into four types by cluster analysis. Type 4 is the most common facial shape in female college students: \circled1 Type 1: Round face \circled2 Type 2: Oval face \circled3 Type 3: Square face \circled4 Type 4: Heart shaped face According to the facial shape analysis, facial shape of female college students are consisting of Heart shaped face(34.8%), Round face(29.2%), Square face(23.5%), oval face(12.5%).
International journal of advanced smart convergence
/
제8권4호
/
pp.104-112
/
2019
This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation forthe identification of a face shape. The proposed algorithm uses face shape asinput information in a single camera environment and divides only face area through preprocessing process. However, it is not easy to accurately recognize the face area that is sensitive to lighting changes and has a large degree of freedom, and the error range is large. In this paper, we separated the background and face area using the brightness difference of the two images to increase the recognition rate. The brightness difference between the two images means the difference between the images taken under the bright light and the images taken under the dark light. After separating only the face region, the face shape is recognized by using the self-organization feature map (SOFM) algorithm. SOFM first selects the first top neuron through the learning process. Second, the highest neuron is renewed by competing again between the highest neuron and neighboring neurons through the competition process. Third, the final top neuron is selected by repeating the learning process and the competition process. In addition, the competition will go through a three-step learning process to ensure that the top neurons are updated well among neurons. By using these SOFM neural network algorithms, we intend to implement a stable and robust real-time face shape recognition system in face shape recognition.
The purpose of this study was to classify women's face types and to analyze the measurement of face types. For study, 180 adult women(aged between 20 and 29) in Pusan and Ulsan area was sampled to be measured for facial types. Data were analyzed by Frequencies, Means, Duncan's Multiple Range Test, Distinction analysis. The major results were as followed. Women's face types were classified by 6 types and there were round shape(29.4%), oblong shape(18.9%), inverted triangle shape(16.1%), square shape(13.9%), egg shape(11.7%), diamond shape(10.0%) in the subject. Phyiognomic facial height was 182.38mm, the upper face length was 59.82mm, the middle face length 60.82mm, the lower face length 61.76mm, and the index of face length to face breadth was 1.35. The face width was 134.90mm, interocular distance 34.75mm, the nose width 33.93mm, and mouth width was 43.87mm. And also, differences from those measurements like forehead breadth, face length/bizygion breadth, forehead slopper, bigonion breadth, bignathion breadth, bignathion slopper.
Appearance matters in society today. Women want to feel good and look their best. They do make-up, wear garment and accessory for their good looking. Doing make-up, we have to know how we are look and to consider face shape. But it is difficult to recognize face shape. Because there is no standard face shape of adult women of quantitative analysis. The purpose of this study was to offer standard face shape of adult women in Korea. Furthermore, the study was to determine and differentiate face shape of each age group to set the basic data for the Korean beauty industry. In this study, photographs of 600 Korean women, age between $20{\sim}50's$, were indirectly measured in Venus face2D program. The measurements were analyzed by statistical methods. As a result of basic statistical data analysis, the average lengths of face were 196mm, lengths of forehead-hairline between eyebrows were 62mm, lengths of eyebrow between noses were 68mm, length of nose between chin were 66mm, and width of face were 150mm. By comparing to each age group's face using ANOVA, the statistically noticeable differences were found in measurements.
Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.
본 연구는 2003년에서 2004년에 실시된 제 5차 한국인 인체치수 조사사업을 통해 확보된 측정사진 중 성인여성 20, 30, 40, 50대 각 150명, 총 600명의 정면과 측면 얼굴사진을 대상으로 얼굴의 연령별 특성을 파악하는데 필요하다고 판단되는 62개의 측정항목과 보다 세부적인 얼굴형태의 분석에 활용될 수 있는 21개의 지수 및 계산항목 총 83개 항목을 본 연구자가 선정한 후 Size Kroea 사업 중 얼굴의 측정 프로그램으로 사용되었던 "Venus face2D"를 이용하여 2차원 간접 측정하였다. 간접 측정기간은 2006년 3월 1일부터 6월 30일까지였다. 연구의 결과는 다음과 같다. 성인여성의 주요 측정항목에 대한 평균 측정치는 얼굴길이 196mm, 상안 62.3mm, 중안 68.9mm, 하안 66.5mm이었고, 이마너비는 125.1mm, 눈살수평너비는 141.2mm, 옆광대점너비 150.8mm 턱아래점너비 124.4mm였다. 이를 바탕으로 우리나라 성인여성 얼굴의 세부항목에 대한 연령집단별 차이를 분석하였으며, 전체 성인여성의 평균 얼굴형과 더불어 각 연령집단별 평균 얼굴형을 제시하였다. 본 연구는 정량화된 수치와 비율을 이용하여 우리나라 성인여성 및 각 연령별 평균 얼굴형을 제시하고, 연령별 얼굴특성을 분석하였다는데 연구의 의의가 있다.
3D 얼굴 모델링은 33공간에서 얼굴을 자유롭게 회전 시켜 다양한 얼굴 자세를 표현하고 조명 효과도 적절하게 모델링 할 수 있으므로, 얼굴 자세, 조명, 표정 등의 표현에 있어서 2D 얼굴 모델링에 비해 보다 정교하며 사실감이 뛰어나 얼굴 인식, 게임, 아바타 등에서 많은 요구가 존재한다. 본 논문에서는 3D 변형 가능 형상 모델에 기반을 둔 3D 얼굴 모델링 방법을 제안한다. 제안된 3D 얼굴 모델링 방법은 먼저 3D 스캐너를 통하여 획득한 3D 얼굴 스캔 데이터를 이용하여 3D 얼굴 변형 가능 형상 모델을 구축한다. 다음, 3D 얼굴 모델링을 하고자 하는 얼굴의 2D 이미지 시퀀스로부터, 해당 얼굴의 특징점들을 검출하고 이들을 매칭하여, 매칭된 특징점들로부터 인수분해 기반 SfM 기법을 이용하여 해당 특징점의 3D 버텍스 좌표 값을 구한다. 이후, 구한 3D 버텍스들을 3D 변형 가능 형상 모델에 정합하여 해당 얼굴의 3D 형상 모델을 얻는다. 또한, 2D 얼굴 이미지 시퀀스들로부터 뷰 독립적인 2D 원통 좌표 텍스쳐 맵을 구하고 이를 이용하여 3D 형상 모델을 렌더링 함으로써, 최종적으로 3B 얼굴 모델을 완성한다. 제안된 3D 얼굴 모델링 방법에 의한 3D 얼굴 모델 생성 과정을 통해서, 본 논문에서 제안한 3D 얼굴 모델링 방법이 기존의 얼굴 모델링 방법들에 비해 상대적으로 빠르고 비교적 정교하게 수행됨을 볼 수 있었다.
A face is the place where individuals can first give their images visually. This chapter presents how 'Visual optical illusion' works in applying makeup and how to differentiate the direction, location and shape of Lip in the aspect of physiognomy. For this study, employed were five types of face shape produced by Photoshop program. The best-matched facial shape was examined through a questionnaire research after applying the optical illusion of Lip to the five types of face shape. The results were revealed to be identical to ones presented in make-up teaching materials. In conclusion, it was found that well-matched shape and size of Lip could make some changes in the facial impression, changing the face shape into oval shape. The facial line can be modified and supplemented by reshaping such facial parts as the Lip, producing well-balanced facial shape. Consequently, make-up was proved to be one of the methods which can be used to create social and psychological effect which can make a favorable facial impression and individuality, natural impression and image making depending on different purposes, taking advantage of optical illusion effect.
본 논문은 얼굴 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 얼굴 형상을 입력정보로 사용하여 전처리 과정을 거쳐 얼굴 영역만을 분할한 후 자기 조직화 특징 지도(SOFM) 알고리즘을 이용하여 얼굴 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 얼굴 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 얼굴 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.