• Title/Summary/Keyword: shape gradient

Search Result 380, Processing Time 0.024 seconds

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

자기공명 영상촬영을 위한 임의로 선택된 모양의 최소인덕턴스 경사자계코일의 설계 (Minimum-Inductance MRI Gradient Coil Design with Arbitrarily-Selected Shape)

  • Lee, J.K.;Yang, Y.J.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.85-87
    • /
    • 1994
  • This paper proposes a new inductance minimization scheme for a gradient system of arbitrarily selected shape. Although it is important to minimize the gradient coil inductance to reduce the current switching time, such minimization has been possible only for cylindrical or parallel biplanar coils. By using small current loops on arbitrarily selected surface as optimization elements, the inductance of the whole circuit can be minimized using the loop's self- and mutual-inductances. Wire positions can be easily derived from the loop current distribution. Preliminary studies for the design of x-directional surface gradient coil show the utility of tile proposed gradient coil design scheme.

  • PDF

Fast MR Imaging Technique by Using Locally-Linear Gradient Field (부분적인 경사자계를 이용한 고속 자기공명 영상촬영기법)

  • 양윤정;이종권
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.93-98
    • /
    • 1996
  • The purpose of this paper is to propose a new localized imaging method of reduced imaging time luting a locally-linear gradient. Since most fast MR(Magnetic Resonance) imaging methods need the whole $\kappa$-space(Spatial frequency space) data corresponding to the whole imaging area, there are limitstions in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging areal Conventional imaging sequences can be used without any RF/gradient pulse sequence modifiestions except the change in the number of encoding steps and the field of view.

  • PDF

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

Optimal Design of Flow Path to Improve Stability on Coolant Heater (냉각수 가열장치의 안정화를 위한 유로 최적 설계)

  • Han, Dae Seong;Bae, Gyu Hyun;Yoon, Hyun Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.134-140
    • /
    • 2021
  • This study investigates the flow efficiency and temperature based on flow path shape. Five models are designed to the no flow path, one flow path, two flow path, three flow path, add inlet flow path and add interior space gradient. Results show that two flow model(add inlet flow path and add interior space gradient), It was confirmed that model(add inlet flow path) is the optimal shape for coolant heat transfer, and model(add interior space gradient) is the optimal shape for coolant flow, demonstrates optimal design among the five models. The results of this study can be utilized to efficiently control the coolant flow through various types of flow paths.

PENALIZED APPROACH AND ANALYSIS OF AN OPTIMAL SHAPE CONTROL PROBLEM FOR THE STATIONARY NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • This paper is concerned with an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. by introducing an artificial compressibility term to relax the incompressibility constraints, we take the penalty method. The existence of optima solutions for the penalized problem will be shown. Next, by employing Lagrange multipliers method and the material derivatives, we derive the shape gradient for the minimization problem of the shape functional which represents the viscous drag.

  • PDF

Assessment of Gradient-based Digital Speckle Correlation Measurement Errors

  • Jian, Zhao;Dong, Zhao;Zhe, Zhang
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.372-380
    • /
    • 2012
  • The optical method Digital Speckle Correlation Measurement (DSCM) has been extensively applied due its capability to measure the entire displacement field over a body surface. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset. A power-law dependence of the standard deviation of displacement measurement errors on the subset size was established when the subset deformation was rigid body translation and random image noise was dominant and it was confirmed by both the numerical and experimental results. In a gradient-based algorithm the basic assumption is rigid body translation of the interrogated subsets, however, this is in contradiction to the real circumstances where strains exist. Numerical and experimental results also indicated that, subset shape function mismatch was dominant when the order of the assumed subset shape function was lower than that of the actual subset deformation field and the power-law dependence clearly broke down. The power-law relationship further leads to a simple criterion for choosing a suitable subset size, image quality, sub-pixel algorithm, and subset shape function for DSCM.

ON THE SHAPE DERIVATIVE IN THE DOMAIN INCLUSION

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.75-87
    • /
    • 2002
  • The shape derivative for the domain functional will be discussed in the situation of domain inclusion. Hadamard's shape structure is sought by using the material derivative in conjunction with the domain imbedding technique.

  • PDF

GRADIENT TYPE ESTIMATES FOR LINEAR ELLIPTIC SYSTEMS FROM COMPOSITE MATERIALS

  • Youchan Kim;Pilsoo Shin
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.635-682
    • /
    • 2023
  • In this paper, we consider linear elliptic systems from composite materials where the coefficients depend on the shape and might have the discontinuity between the subregions. We derive a function which is related to the gradient of the weak solutions and which is not only locally piecewise Hölder continuous but locally Hölder continuous. The gradient of the weak solutions can be estimated by this derived function and we also prove the local piecewise gradient Hölder continuity which was obtained by the previous results.

Shape Optimization of Magnetic Systems with state variable Constraints (상태변수 구속조건을 갖는 자장시스템의 형상최적화)

  • Kim, Chang-Wook;Choi, Myung-Jun;Lee, Se-Hee;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.143-145
    • /
    • 1998
  • This paper presents the shape optimization algorithm of magnetic systems with, state variable constraints using the Finite Element Method. In the design' of electromagnetic systems, sometimes we have to consider the state variables when they seriously affect the performance of electromagnetic systems. So we should define that some design problems have the constraints of the state variables. We use the gradient of constraints and sensitivity analysis in order to consider the state variable constraints and obtain an optimal shape. The optimal shape must be satisfied constraints, so we take the gradient projection method as a kind of optimization methods. In this paper a numerical example with state variable constraints uses the superconducting electromagnet that has another constraint which the volume of the superconductor should be constant.

  • PDF