• Title/Summary/Keyword: shape finding

Search Result 402, Processing Time 0.034 seconds

Design of Small Antennas for Direction Finding Applications (방향 탐지용 소형 안테나 설계)

  • Cho, Chi-Hyun;Oh, Seung-Sub;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.913-921
    • /
    • 2007
  • In this paper, we propose a novel small antenna for direction finding applications. The proposed antenna employs a skirt type disk to eliminate the radiation null on the broad-side direction in the high frequency range. Additionally, the multi-section matching stub is used for impedance matching in the low frequency range, The size of the proposed antenna is reduced as a half of the 60cm dipole which has a same resonance frequency of 200MHz. The antenna maintains a donut shape radiation pattern with a broad beam width for a wide range of frequency while the 60cm dipole shows radiation nulls on the broad-side direction and the high side-lobe level from 700MHz to 1,300MHz.

A Study on the Costume Relics Excavated from Royal Family's Ancient Tombs of Balhae at the Runghai Sites (용해(龍海) 발해 왕실고분 출토 유물에 관한 고찰)

  • Jeon, Hyun-Sil;Kang, Soon-Che
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.10
    • /
    • pp.72-88
    • /
    • 2011
  • This study is about the costume relics that were excavated from M10 of the 6th site, M13 and M14 of the 8th site among all the Runghai(龍海) ancient tomb sites that were known as the royal family's tombs of Balhae, which were built from the late 8th century to the early 9th century. These costume relics were also introduced in the academic journal of Chinese archaeology(考古) 6 in 2009. The summary of the results that focused on finding features of the costume relics and its meaning were as follows: 1. Male and female statues, both of which were excavated from the Runghai ancient tomb sites, had the shape and composition of the government official's costumes such as the Danryeong(團領), Bokdu, and Gwadae. The female's hairstyle and accessories were quite similar to other costume relics of Balhae. In particular, the male statues wearing the Danryeong and Bokdu were considered as the normal figures of government officials of Balhaeafter the mid 8th century. 2. The female statue wearing the male attire is considered as a maid, and we can confirm that women dressing up like a man was a popular trend in Tang(唐), and this trend was introduced to Balhae. 3. The back flap(垂脚) of Bokdu that the male statue is wearing in M10 of the 6th site, has a shape that has not been found in the ancient relics of both Balhae and Tang. Therefore, it is considered as a unique shape of Bokdu of Balhae. However, it needs to be observed more and discussed in the future. 4. In regards to the Gwadae, the outside of the Gwadae is decorated with jade and has an embossed carving that is gold inside. The Gwadae of the Runghaisites has a unique design and it is distinguished from other ancient relics. 5. The gold trefoil crown and the leather conical hat that were found in M14 of the 8th site can be seen as the basic composition of official's hats in ancient Korea. Also, the motif of the gold trefoil is closely related to Anthemion that is often seen in the relics of the Three Kingdom period. Thus, we can assume according to this important finding that the style of ancient Korea official's hats came from either the king or a royal family of Balhae after the mid 8th century.

Incidental findings in a consecutive series of digital panoramic radiographs

  • MacDonald, David;Yu, Warrick
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • Purpose: The aim of this study was to determine the prevalence of incidental findings(IFs) on digital dental panoramic radiographs(DPRs) of asymptomatic patients attending a general dental practice. Materials and Methods: This was a retrospective study of 6,252 consecutive digital (photostimulatable phosphor) DPRs of patients who visited a Canadian general dental practice for a complete new patient examination. The IFs were grouped into dental-related anomalies, radiopacities and radiopacities in the jaws, changes in the shape of the condyles, and other findings in the jaws, such as tonsilloliths and mucosal antral pseudocysts. Their prevalence was determined. Results: Thirty-two percent of the DPRs showed at least 1 IF. The highest prevalence was found for dental-related anomalies(29% of all DPRs), of which impacted teeth were the most prevalent finding (24% of all DPRs), followed by idiopathic osteosclerosis(6% of all DPRs). A lower prevalence was noted for tonsilloliths(3%), and the prevalence of root tips, mucosal antral pseudocysts, and anomalies in condylar shape was approximately 1% each. Conclusion: The observed prevalence of 32.1% for IFs of any type underscores the need for a dental practitioner to review the entire DPR when a patient presents for an initial dental examination (or check-up) or for dental hygiene. Only a single IF (a central giant cell granuloma) provoked alarm, as it was initially considered malignant. Similarly, impacted teeth and suspected cysts need careful evaluation upon discovery to determine how they may be optimally managed.

Optimum Shape Design of Single-Sided Linear Induction Motors Using Response Surface Methodology and Finite Element Method (반응 표면법과 유한 요소법을 이용한 편측식 선형 유도 전동기의 형상 최적 설계)

  • Song, Han-Sang;Lee, Jung-Ho;Lee, Seung-Chul;Lee, Byeong-Hwa;Kim, Kyu-Seob;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1057-1058
    • /
    • 2011
  • This paper deals with finding the optimal ratio of height and length of Single-Sided Linear Induction Motors (SLIM) using Finite Element Method (FEM) for magnetic field analysis coupled with optimal design methodology. For effective analysis, FEM is conducted in time harmonic field which provides steady state performance with the fundamental components of voltage and current. The ratio of height to length providing the required output power is obtained by Response Surface Methodology (RSM) and optimal values are presented by the variation in output power. When output power is small, the ratio is high and as the power increases, the ratio shows a converged value. Considering the general application of linear motors, using a small ratio can be limiting, however, the shape ratio for maximum thrust can be identified.

  • PDF

A Shape Finding of the Cable Structures by Flexibility Iteration Procedure and Nonlinear FEM (유연성 반복과정과 비선형유한요소법에 의한 케이블 구조물의 형태탐색)

  • 황보석;서삼열;진권태
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 1990
  • Analysis of cable structures is complex because their force - displacement relationships are highly nonlinear and also because large deformations introduce geometric nonlinearity. Therefore, we must take account their geometric nonlinearity in the analysis and find the equilibrated shape of cable structures. In this paper, to slove these problems, numerical procedures involving geometrical nonlinearity are introduced. They are applicable to general cable net, flexible transmission lines and suspended cable roof. These procedures are divided into two parts; one is to obtain the equilibrated shapes and stresses of the cable structures with uniform load by flexibility iteration method, the other is to analyse the equilibrated structures subjected to nodal external forces by nonlinear finite element method.

  • PDF

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding

  • Lee, Jae-Yeol;Kim, Nak-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied the flow characteristics of the polymer melt in the injection molding process with ultrasonic vibration by using the numerical analysis. To minimize the error between the experimental data and numerical result, we presented a methodology using the design of experiments and the response surface method for reverse engineering. This methodology can be applied to various fields to obtain a valid and accurate numerical analysis. Ultrasonic vibration is generally applied between an extruder and the entrance of a mold for improvement the flow rate in injection molding. In comparison with the general ultrasonic process, the mode shape of the mold must be also considered when the ultrasonic vibration is applied on the mold. The mode shape is defined as the periodic and spatial deformation of the structure owing to the effect of the vibration, and it varies greatly according to vibration conditions such as the forcing frequency. Therefore, we considered new index and found the forcing frequency for obtaining the highest flow rate within the range from 20 to 60 kHz on the basis of the index. Ultimately, we presented the methodology for not only obtaining a valid and accurate numerical analysis, but also for finding the forcing frequency to obtain the highest flow rate in injection molding using ultrasonic vibration.

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 김도훈;유원재;박낙규;강영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.255-259
    • /
    • 2003
  • Moire topography method isa well-known non-contacting 3-D measurement method as afast non-contact test for three-dimension shape measuring method. Recently, it's important to study the automatic three-dimension measurement by moire topography because it is frequently applied to the reverse engineering , the medical , the entertainment fields. Three-dimension measurement using projection of moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, the classical moire method is computerized-so called digital moire when a virtual grating pattern is projected on a surface, the captured image by the CCD camera has three-dimension information of the objects. The moire image can be obtained through a simple image processing and a reference grating pattern. and it provides similar results without physical grating pattern. digital projection moire topography turn out to be very effective for the three-dimension measurement of objects. Using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the four-three step algorithm method instead of the same step in the phase shifting of different pitch.

  • PDF

Effect of the Compaction Energy and the Marshall Stability due to the Marshall Equipments and Installation Conditions (마샬시험 장치 및 설치조건이 다짐에너지와 안정도에 미치는 영향)

  • Park, Tae-Soon;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.4 s.6
    • /
    • pp.123-131
    • /
    • 2000
  • The compaction equipment and the Marshall stability head are the two important testing equipment for the Marshall test. The compaction equipment is closely related to the air void, VMA and compactability of the mixtures, and the stability head is related to the Marshall stability and the flow, therefore the size and the shape of the equipment is essential for finding the accurate optimum asphalt content for the asphalt mix design. However, the size and the shape of the equipment currently used and the condition of the installation of compaction pedestal in this country are different from each agency and manufacturer. The national inspection of the Marshall equipment is necessary because the difference can affect the test results and also the performance of the asphalt pavement.

  • PDF

Modelling the shapes of the largest gravitationally bound objects

  • Rossi, Graziano;Sheth, Ravi K.;Tormen, Giuseppe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • We combine the physics of the ellipsoidal collapse model with the excursion set theory to study the shapes of dark matter halos. In particular, we develop an analytic approximation to the nonlinear evolution that is more accurate than the Zeldovich approximation; we introduce a planar representation of halo axis ratios, which allows a concise and intuitive description of the dynamics of collapsing regions and allows one to relate the final shape of a halo to its initial shape; we provide simple physical explanations for some empirical fitting formulae obtained from numerical studies. Comparison with simulations is challenging, as there is no agreement about how to define a non-spherical gravitationally bound object. Nevertheless, we find that our model matches the conditional minor-to-intermediate axis ratio distribution rather well, although it disagrees with the numerical results in reproducing the minor-to-major axis ratio distribution. In particular, the mass dependence of the minor-to-major axis distribution appears to be the opposite to what is found in many previous numerical studies, where low-mass halos are preferentially more spherical than high-mass halos. In our model, the high-mass halos are predicted to be more spherical, consistent with results based on a more recent and elaborate halo finding algorithm, and with observations of the mass dependence of the shapes of early-type galaxies. We suggest that some of the disagreement with some previous numerical studies may be alleviated if we consider only isolated halos.

  • PDF