• Title/Summary/Keyword: shape feature

Search Result 1,053, Processing Time 0.021 seconds

Feature curve extraction from point clouds via developable strip intersection

  • Lee, Kai Wah;Bo, Pengbo
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

Pattern Recognition using Feature Feedback : Performance Evaluation for Feature Mask (특징되먹임을 이용한 패턴인식 : 특징마스크 검증을 통한 특징되먹임 성능분석)

  • Kim, Su-Hyun;Choi, Sang-Il;Bae, Sung-Han;Lee, Young-Dae;Jeong, Gu-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.179-185
    • /
    • 2010
  • In this paper, we present a performance evaluation for face recognition algorithm using feature feedback according to the Feature mask. In the face recognition method using feature feedback, important region is extracted from original data set by using the reverse mapping from the extracted features to the original space. In this paper, we evaluate the performance of feature feedback according to shape of Feature Mask for Yale data. Comparing the result using Important part and unimportant part, we show the validity and applicability of the pattern recognition method based on feature feedback.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Plant leaf Classification Using Orientation Feature Descriptions (방향성 특징 기술자를 이용한 식물 잎 인식)

  • Gang, Su Myung;Yoon, Sang Min;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.300-311
    • /
    • 2014
  • According to fast change of the environment, the structured study of the ecosystem by analyzing the plant leaves are needed. Expecially, the methodology that searches and classifies the leaves from captured from the smart device have received numerous concerns in the field of computer science and ecology. In this paper, we propose a plant leaf classification technique using shape descriptor by combining Scale Invarinat Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) from the image segmented from the background via Graphcut algorithm. The shape descriptor is coded in the field of Locality-constrained Linear Coding to optimize the meaningful features from a high degree of freedom. It is connected to Support Vector Machines (SVM) for efficient classification. The experimental results show that our proposed approach is very efficient to classify the leaves which have similar color, and shape.

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 김동수;남기환;한준희;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.181-185
    • /
    • 1998
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels.

  • PDF

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.783-788
    • /
    • 2002
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face Image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives md vowels.

Edge Feature Extract CBIRS for Car Retrieval : CBIRS/EFI (차량 검색을 위한 측면 에지 특징 추출 내용기반 검색 : CBIRS/EFI)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.75-82
    • /
    • 2010
  • The paper proposed CBIRS/EFI with contents based search technique using edge feature information of the object from image information of the object which is uncertain. In order to search specially efficiently case of partial image information of the object, we used the search technique which extracts outline information and color information in feature information of object. In order to experiment this, we extracted side edge feature information of the vehicle for feature information of the object after capture the car image of the underground garage. This is the system which applies a contents base search by the result which analyzes the image which extracts a feature, an original image to search and a last similar measurement result. This system compared in FE-CBIRS systems which are an existing feature extraction contents base image retrieval system and the function which improves the accuracy and an effectiveness of search rate was complemented. The performance appraisal of CBIRS/EFI systems applied edge extraction feature information and color information of the cars. And we compared a color feature search time, a shape characteristic search time and a search rate from the process which searches area feature information. We extracted the case 91.84% of car edge feature extraction rate. And a average search time of CBIRS/EFI is showing a difference of average 0.4-0.9 seconds than FE-CBIRS from vehicle. color search time, shape characteristic search time and similar search time. So, it was proven with the fact that is excellent.

Shape Retrieval using Curvature-based Morphological Graphs (굴곡 기반 형태 그래프를 이용한 모양 검색)

  • Bang, Nan-Hyo;Um, Ky-Hyun
    • Journal of KIISE:Databases
    • /
    • v.32 no.5
    • /
    • pp.498-508
    • /
    • 2005
  • A shape data is used one oi most important feature for image retrieval as data to reflect meaning of image. Especially, structural feature of shape is widely studied because it represents primitive properties of shape and relation information between basic units well. However, most structural features of shape have the problem that it is not able to guarantee an efficient search time because the features are expressed as graph or tree. In order to solve this problem, we generate curvature-based morphological graph, End design key to cluster shapes from this graph. Proposed this graph have contour features and morphological features of a shape. Shape retrieval is accomplished by stages. We reduce a search space through clustering, and determine total similarity value through pattern matching of external curvature. Various experiments show that our approach reduces computational complexity and retrieval cost.