In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.
Kim, Su-Hyun;Choi, Sang-Il;Bae, Sung-Han;Lee, Young-Dae;Jeong, Gu-Min
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.10
no.5
/
pp.179-185
/
2010
In this paper, we present a performance evaluation for face recognition algorithm using feature feedback according to the Feature mask. In the face recognition method using feature feedback, important region is extracted from original data set by using the reverse mapping from the extracted features to the original space. In this paper, we evaluate the performance of feature feedback according to shape of Feature Mask for Yale data. Comparing the result using Important part and unimportant part, we show the validity and applicability of the pattern recognition method based on feature feedback.
Korean Journal of Computational Design and Engineering
/
v.9
no.1
/
pp.51-61
/
2004
Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.
Korean Journal of Computational Design and Engineering
/
v.9
no.1
/
pp.44-50
/
2004
Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.
According to fast change of the environment, the structured study of the ecosystem by analyzing the plant leaves are needed. Expecially, the methodology that searches and classifies the leaves from captured from the smart device have received numerous concerns in the field of computer science and ecology. In this paper, we propose a plant leaf classification technique using shape descriptor by combining Scale Invarinat Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) from the image segmented from the background via Graphcut algorithm. The shape descriptor is coded in the field of Locality-constrained Linear Coding to optimize the meaningful features from a high degree of freedom. It is connected to Support Vector Machines (SVM) for efficient classification. The experimental results show that our proposed approach is very efficient to classify the leaves which have similar color, and shape.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.4
/
pp.370-380
/
2002
This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1998.11a
/
pp.181-185
/
1998
Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.5
/
pp.783-788
/
2002
Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face Image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives md vowels.
Journal of the Korea Society of Computer and Information
/
v.15
no.11
/
pp.75-82
/
2010
The paper proposed CBIRS/EFI with contents based search technique using edge feature information of the object from image information of the object which is uncertain. In order to search specially efficiently case of partial image information of the object, we used the search technique which extracts outline information and color information in feature information of object. In order to experiment this, we extracted side edge feature information of the vehicle for feature information of the object after capture the car image of the underground garage. This is the system which applies a contents base search by the result which analyzes the image which extracts a feature, an original image to search and a last similar measurement result. This system compared in FE-CBIRS systems which are an existing feature extraction contents base image retrieval system and the function which improves the accuracy and an effectiveness of search rate was complemented. The performance appraisal of CBIRS/EFI systems applied edge extraction feature information and color information of the cars. And we compared a color feature search time, a shape characteristic search time and a search rate from the process which searches area feature information. We extracted the case 91.84% of car edge feature extraction rate. And a average search time of CBIRS/EFI is showing a difference of average 0.4-0.9 seconds than FE-CBIRS from vehicle. color search time, shape characteristic search time and similar search time. So, it was proven with the fact that is excellent.
A shape data is used one oi most important feature for image retrieval as data to reflect meaning of image. Especially, structural feature of shape is widely studied because it represents primitive properties of shape and relation information between basic units well. However, most structural features of shape have the problem that it is not able to guarantee an efficient search time because the features are expressed as graph or tree. In order to solve this problem, we generate curvature-based morphological graph, End design key to cluster shapes from this graph. Proposed this graph have contour features and morphological features of a shape. Shape retrieval is accomplished by stages. We reduce a search space through clustering, and determine total similarity value through pattern matching of external curvature. Various experiments show that our approach reduces computational complexity and retrieval cost.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.