• Title/Summary/Keyword: shape error

Search Result 1,039, Processing Time 0.025 seconds

Sequential Shape Modification for Monotone Convex Function: L2 Monotonization and Uniform Convexifiation

  • Lim, Jo-Han;Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.675-685
    • /
    • 2008
  • This paper studies two sequential procedures to estimate a monotone convex function using $L_2$ monotonization and uniform convexification; one, denoted by FMSC, monotonizes the data first and then, convexifis the monotone estimate; the other, denoted by FCSM, first convexifies the data and then monotonizes the convex estimate. We show that two shape modifiers are not commutable and so does FMSC and FCSM. We compare them numerically in uniform error(UE) and integrated mean squared error(IMSE). The results show that FMSC has smaller uniform error(UE) and integrated mean squared error(IMSE) than those of FCSC.

Position Accuracy Error Analysis in 2 Phase 8 Pole HB Type LPM (2상 8극 HB형 LPM의 위치오차 해석)

  • Kim, Sung-Hun;Lee, Eun-Woong;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.38-41
    • /
    • 1997
  • As the LPM is used for position accuracy decision device it is required that both the reason of posion error and the definition of position itself should be cleared. In this study, the precision of the position decision of LPM is affected by the geometrical shape such as tooth shape or processing accuracy. By using the analysis of magnetic circuit, we calculated the permeance come up with the gap. Once the thrust force has been obtained, the permeance due to the mechanical error of the pole pitch and the tooth pitch becomes the error of thrust force. We confirmed as well that it is being affected by the difference due to the variation of the airgap permeance.

  • PDF

Research on Improvement of Performance of Anemometer Using PTC Thermistor (PTC 서미스터를 이용한 유속계의 성능향상에 관한 연구)

  • Yoon, Joon-Yong;Cho, Nahm-Gyoo;Kim, Jin-Rae;Sung, Nak-Won;Kim, Hwang-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.15-21
    • /
    • 2000
  • An anemometer employing the bulk PTC thermistor as the sensing element is investigated in this study. The numerical and experimental works are carried out to improve the sensitivity problem of the element by focusing fluid dynamics point of view. The typical shape of the sensing element has been used as a rectangular type, but this shape has a sensitivity problem because of flow separations on the sharp edge when the flow direction is different from that of the sensing element. In order to reduce the reading error, the installer has to be very careful about the flow direction. The reading error fluctuation by time as well as the sensitivity problem can be improved considerably through this study. It can be concluded that the small change of the sensor shape can improve the performance of the flow sensor.

  • PDF

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

A Modified Mesh Generation Algorithm Using Pollution Error (Pollution error를 이용한 개선된 요소생성 알고리즘)

  • 유형선;장준환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.34-42
    • /
    • 2001
  • In this paper, we study on a modified mesh generation method based on the pollution error estimate. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But we use the remeshing scheme in the proposed method. We will also show that the pollution error reduces less than the local error.

  • PDF

An error- diffusion halftoning technique based on noise spectrum shaping (잡음주파수특성 성형에 의한 오차확산 영상이진화 기법)

  • 이광기;이재천;권용무;김형곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1464-1472
    • /
    • 1995
  • In this paper, we propose an error diffusion image halftoning technique based on the noise spectrum shaping. The new technique can arbitrarily control the shape of the display error spectrum whereas conventional halftoning algorithms have been known to minimize dc errors only in which case edge information cannot be properly rendered. As a method for estimating the error diffusion coefficients, a least mean square (LMS) approach is adopted.

  • PDF

caliber Design in Shape Rolling by Finite Element Method (유한요소법을 이용한 형상 압연 공정의 공형 설계)

  • 황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.44-47
    • /
    • 2000
  • In industrial practice caliber design in shape rolling depends on the designer's experience which in general is obtained through costly trial-and error process. Demonstrated in this paper is an application of the finite element method to the determination of optimal caliber shapes in shape rolling of LM-Guide.

  • PDF

An Adaptive Slicing Algorithm for Profiled Edge laminae Tooling

  • Yoo, Seung-Ryeol;Walczyk, Daniel
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.64-70
    • /
    • 2007
  • Of all the rapid tooling (RT) methods currently available, thick-layer laminated tooling is the most suitable for large-scale, low-cost dies and molds. Currently, the determination of a lamina's contour or profile and the associated slicing algorithms are based on existing rapid prototyping (RP) data manipulation technology. This paper presents a new adaptive slicing algorithm developed exclusively for profiled edge laminae (PEL) tooling PEL tooling is a thick-layer RT technique that involves the assembly of an array of laminae, whose top edges are simultaneously profiled and beveled using a line-of-sight cutting method based on a CAD model of the intended tool surface. The cutting profiles are based on the intersection curve obtained directly from the CAD model to ensure geometrical accuracy. The slicing algorithm determines the lamina thicknesses that minimize the dimensional error using a new tool shape error index. At the same time, the algorithm considers the available lamination thicknesses and desired lamina interface locations. We demonstrate the new slicing algorithm by developing a simple industrial PEL tool based on a CAD part shape.

Analysis of Master Dimensional Shape Error Rate According to Reverse Engineering Technique (역설계 방법에 의한 시편 치수 형상의 오차율 분석)

  • Jung, Hyun-Suk;Park, Su-Jung;Yoo, Joong-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.393-399
    • /
    • 2016
  • In this study, an experiment was conducted using a 3D scanner, commonly used in reverse engineering techniques, and the newly introduced CT measuring machine. The hole, width, and angle of specimens having various shapes were designated, the error rates in dimensional modelling generated during scanning with each device were compared, and the models were printed using a 3D printer. A secondary comparative analysis of the two printed specimens was conducted; the causes of dimension errors that occur during the printing process after scanning with each device and the differences associated with variation in shape were also analyzed. Based on the analysis results, the featured shape for each scanning application method and issues to consider in reverse engineering were presented, and the use of the CT measuring machine was recommended as a method to minimize error rates in dimensions and ensure efficient reverse engineering.