• Title/Summary/Keyword: shape control of powder

Search Result 93, Processing Time 0.027 seconds

Post-fire test of precast steel reinforced concrete stub columns under eccentric compression

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Gong, Zhichao
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.111-122
    • /
    • 2019
  • This paper presents an experimental work on the post-fire behavior of two kinds of innovative composite stub columns under eccentric compression. The partially precast steel reinforced concrete (PPSRC) column is composed of a precast outer-part cast using steel fiber reinforced reactive powder concrete (RPC) and a cast-in-place inner-part cast using conventional concrete. Based on the PPSRC column, the hollow precast steel reinforced concrete (HPSRC) column has a hollow column core. With the aim to investigate the post-fire performance of these composite columns, six stub column specimens, including three HPSRC stub columns and three PPSRC stub columns, were exposed to the ISO834 standard fire. Then, the cooling specimens and a control specimen unexposed to fire were eccentrically loaded to explore the residual capacity. The test parameters include the section shape, concrete strength of inner-part, eccentricity ratio and heating time. The test results indicated that the precast RPC shell could effectively confine the steel shape and longitudinal reinforcements after fire, and the PPSRC stub columns experienced lower core temperature in fire and exhibited higher post-fire residual strength as compared with the HPSRC stub columns due to the insulating effect of core concrete. The residual capacity increased with the increasing of inner concrete strength and with the decreasing of heating time and load eccentricity. Based on the test results, a FEA model was established to simulate the temperature field of test specimens, and the predicted results agreed well with the test results.

Control of YAG($Y_{3}Al_{5]O_{12}$) Particle Shape prepared by Sol-Gel Process (솔-젤 공정(工程)을 이용(利用)하여 제조(製造)된 YAG($Y_{3}Al_{5}O_{12}$) 분말 입형제어)

  • Park, Jin-Tae;Kim, Chul-Joo;Yoon, Ho-Sung;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.52-59
    • /
    • 2008
  • Sol-gel process applied in this study was carried out by chelation of metal ions and citric acid. From the results of thermal gravimetric analysis and XRD analysis of gel powder obtained through sol-gel and heat treatment, gel powders are mostly amorphous, and crystallize completely at $900^{\circ}C$, and the crystalline structure of YAG increases with increasing calcinations temperature. Since YAG prepared by sol-gel & calcinations process was porous, and the sape and size was irregular and nonuniform, the shape and size of YAG powder had to be controlled. Therefore the effects of organic materials such as ethylene glycol and surfactant on the crystalline structure of YAG powder were investigated. Polyesterification of ethylene glycol and citric acid separated reaction area of metal ions in the solution and decreased the size of YAG primary particles. The addition of Igepal 630 as surfactant formed the droplet in the solution, and increased the size of primary particles which forms the aggregate of YAG In order to obtain monodispersed YAG particles of uniform size, gel powder prepared with organic materials had to be milled before calcination. And milling process was very important for obtaining YAG of uniform size.

Template-free Synthesis and Characterization of Spherical Y3Al5O12:Ce3+ (YAG:Ce) Nanoparticles

  • Kim, Taekeun;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2917-2921
    • /
    • 2014
  • Cerium-activated yttrium aluminate ($Y_3Al_5O_{12}:Ce^{3+}$) exhibiting a garnet structure has been widely utilized in the production of light emitting diodes (LEDs) as a yellow emitting phosphor. The commercialized yttrium aluminum garnet (YAG) phosphor is typically synthesized by a solid-state reaction, which produces irregular shape particles with a size of several tens of micrometers by using the top-down method. To control the shape and size of particles, which had been the primary disadvantage of top-down synthetic methods, we synthesized YAG:Ce nanoparticles with a diameter of 500 nm using a coprecipitation method under the atmospheric pressure without the use of template or special equipment. The precursor particles were formed by refluxing an aqueous solution of the nitrate salts of Y, Al, and Ce, urea, and polyvinylpyrrolidone (55 K) at $100^{\circ}C$ for 12 h. YAG:Ce nanoparticles were formed by the calcination of precursor particles at $1100^{\circ}C$ for 10 h under atmospheric conditions. The phase identification, microstructure, and photoluminescent properties of the products were evaluated by X-ray powder diffraction, scanning electron microscopy, absorption spectrum and photoluminescence analyses.

Laser Scanning Path Generation for the Fabrication of Large Size Shape

  • Choi, Kyung-Hyun;Choi, Jae-Won;Doh, Yang-Hoe;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2175-2178
    • /
    • 2005
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It has been used to fabricate desirable part to sinter powder and stack the fabricated layer. Since the sintering process occurs using infrared laser having high thermal energy, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, the fast scanning path generation is necessary to eliminate the factors of quality deterioration. In case of fabricating larger size parts, the unique scanning device and scanning path generation should be considered. In this paper, the development of SLS machines being capable of large size fabrication(800${\times}$1000${\times}$800 mm, W${\times}$D${\times}$H) will be addressed. The dual laser system and the unique scanning device have been designed and built, which employ CO2 lasers and dynamic 3-axis scanners. The developed system allows scanning a larger planar surface with the desired laser spot size. Also, to generate the fast scanning paths, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction should be enabled. To evaluate the suggested method, the complex part will be used for the experiment fabrication.

  • PDF

A Study on Generation of Laser Scanning Path and Scanning Control (레이저 주사 경로 생성 및 주사 제어에 관한 연구)

  • 최경현;최재원;김대현;도양회;이석희;김성종;김동수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1295-1298
    • /
    • 2004
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It is used to fabricate desirable part to sinter powder and stack the fabricated layer. To develop this SLS machine, it needs effective scanning path and the development of scanning device. This paper shows how to make fast scanning path with respect to scan spacing, laser beam size and scanning direction from 2-dimensional sliced file generated in commercial CAD/CAM software. Also, we develop the scanning device and its control algorithm to precisely follow the generated scanning path. Scanning path affects precision and total machining time of the final fabricated part. Sintering occurs using infrared laser which has high thermal energy. As a result, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, fast scanning path generation is needed to eliminate the factors of quality deterioration. It highly affects machining efficiency and prevents shrinkage and curling by relatively lessening the thermal distribution of the surface of sintering layer. To generate this fast scanning path, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction must be enabled. This paper addresses path generation method to focus on fast scanning, and development of scanning system and control algorithm to precisely follow generated path.

  • PDF

Synthesis of Ag-Pd Electrode having Oxide Additive (산화물을 첨가한 Ag-Pd 전극의 제조)

  • Lee, Jae-Seok;Lee, Dong-Yoon;Song, Jae-Sung;Kim, Myoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.

A Study of Various SiO2 Coating Control on White TiO2 Pigment for Cosmetic Applications (다양한 SiO2 코팅 제어를 통한 화장품용 루타일형 TiO2의 색상 및 물성 연구)

  • Park, Minsol;Shim, Wooyoung;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.207-212
    • /
    • 2022
  • Nanosized rutile titanium dioxide (TiO2) is used in inorganic pigments and cosmetics because of its high whiteness and duality. The high quality of the white pigments depends on their surface coating technique via the solgel process. SiO2 coatings are required to improve the dispersibility, UV-blocking, and whiteness of TiO2. Tetraethyl orthosilicate (TEOS) is an important coating precursor owing to its ability to control various thicknesses and densities. In addition, we use Na2SiO3 (sodium silicate) as a precursor because of its low cost. Compared to TEOS, which controls the pH using a basic catalyst, Na2SiO3 controls the pH using an acid catalyst, giving a uniform coating. The coating thickness of TiO2 is controlled using a surface modifier, cetrimonium bromide, which is used in various applications. The shape and thickness of the nanosized coating layer on TiO2 are analyzed using transmission electron microscopy, and the SiO2 nanoparticle behavior in terms of the before-and-after size distribution is measured using a particle size analyzer. The color measurements of the SiO2 pigment are performed using UV-visible spectroscopy.

Quality Characteristics of Bread Added with Gastrodia elata Blume Powder (천마분말을 첨가한 식빵의 품질 특성)

  • Kim, Hyeon-Ju;Kang, Woo-Won;Moon, Kwang-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.437-443
    • /
    • 2001
  • Gastrodia elata blume (GEB) is considered to be a useful herbal medicine in oriental countries for the treatment of headache, migraine, dizziness, childhood convulsion, epilepsy, rheumatism, hypertension, neuralgia and neurological disorders. This study was carried out to investigate the quality of bread added with the powder of GEB. The possibility of GEB wheat flour mixture as bread was studied by adding 0%, 0.5%, 1.0%, 1.5%, 2.0% of GEB powder to wheat flour. In Farinograph data, the dough stability decreased with the increase of GEB powder. Granular size of starches ranged from $36\;{\mu}m\;to\;60{\mu}m$, and the shape of them showed a long oval figure. Amylograph showed that the increase in the ratio of GEB on the doughs slightly elevated in the maximum viscosity. The loaf volume of 0.5% powder increased by 10.2% but that of 2.0% decreased by 16.8%. The moisture content was 43.57% in the control but it increased as the powder addition. The colors of crust and crumb were not significantly different among L, b and ${\Delta}E$, but 'a' value in crumb was increased as the powder addition. The addition of the powder had no significant effect on bread texture. In sensory evaluation, the moistness increased as the increase of the powder addition. The control bread was most excellent, and the bread made by mixing additives were better than just 0.5% GEB-wheat flour in terms of quality.

  • PDF

Synthesis of indium hydroxide powders by a precipitation method (침전법을 이용한 Indium hydroxide 분말의 합성 연구)

  • Choi, Eun-Kyoung;Lee, Won-Jun;Han, Kyu-Sung;Kim, Ung-Soo;Kim, Jin-Ho;Hwang, Kwang-Teak;Kim, Jong-Young;Hwang, Hae-Jin;Shim, Kwang-Bo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.122-129
    • /
    • 2017
  • For the production of a high-density ITO target, $In_2O_3$ powders with a small particle size and low agglomeration should be synthesized. The purpose of this study is to control the size and shape of the Indium hydroxide precursor which affects the properties of the $In_2O_3$ powder. As a starting raw material, Indium metal was dissolved in a Nitric acid ($HNO_3$) solution. The effect of concentration, pH, and temperature on the properties of Indium hydroxide was investigated using ammonium hydroxide as a precipitant. Crystallite size of each sample was analyzed by X-ray diffraction and the shape and the size of the powder was analyzed by transmission electron microscopy. As a result, the particle size of Indium hydroxide was increased with increase in the concentration of $In(NO_3)_3$ and the particle size and shape of the Indium hydroxide remained unchanged with increase in the pH of the solution. The particle size increased with increase in the precipitation temperature during precipitation.