• Title/Summary/Keyword: shape and decay

Search Result 89, Processing Time 0.033 seconds

A Study of the Inorganic Scintillator Properties for a Phoswich Detector (Phoswich 검출기 제작을 위한 무기 섬광체 특성 연구)

  • Lee, Woo-Gyo;Kim, Yong-Kyun;Kim, Jong-Kyung;Tarasov, V.;Zelenskaya, O.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • CsI(Tl), $CdWO_4(CWO),\;Bi_4Ge_3O_{12}(BGO)\;and\;Gd_2SiO_5:Ce(GSO)$ scintillators were studied to manufacture a phoswich detector. The maximum wavelengths of the CsI(Tl), CWO, BGO and GSO scintillators are 550 nm, 475 nm, 490 nm and 440 nm for the radioluminescence, and the absolute light outputs of the CsI(Tl), CWO, BGO and GSO scintillators are 54890 phonon/MeV, 17762 phonon/MeV, 8322 phonon/MeV and 8932 phonon/MeV with a neutral filter, and the decay time of the CsI(Tl), CWO, BGO and GSO scintillators is $1.3{\mu}s,\;8.17{\mu}s$, 213 ns and 37 ns by a single photon method. The phoswich detector which was manufactured with plastic and CsI(Tl) scintillators could separate the ${\beta}$ particle and ${\gamma}$ ray. The phoswich detector could also measure the pulse height spectra of the ${\beta}$ particle and ${\gamma}$ ray by a PSD method.

Spreading Beam Poastic Hinging Zone of the High-Strength R/C Beam-Column Joints Using the Vertically Anchored Intermediate Reinforcements (수직앵커형 중간철근으로 보강된 고강도 철근콘크리트 보_-기둥 접합부의 소성힌지 확산)

  • 유영찬;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.169-179
    • /
    • 1995
  • The purpose of this study is to spread beam plastic hinging zone of the high-strength($f'_c=700kg/cm^2$) reinforced concrete beam-column joints away from the column face by vertically anchored intermediate reinforcements. The newly proposed intermediate reinforcements which are vertically anchored by interlinking each intermediate rebars are tested to insure the ductile behavior of R /C beam-column joins. Main variable is the shape of intermediate reinforcements. From the test results, the newly proposed intermediate rebar detail can move arid expand the beam plastic hinging zone about 1.Od from column face and can delay the strength decay of the high-strength R /C beam-column joint. Also energy dissipation capacity of specimen IV-1.OD10 which is reinforced by vertically anchored intermediate rebars about 1.0d is 1.6 times as high as the specimen CM-STAN which is designed by ACI318-89.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.

Effect of preharvest application of chitosan on the growth and quality of peach fruit (Prunus persica L.)

  • Bae, Tae-Min;Seo, Joung-Seok;Kim, Jin-Gook;Kim, Do-Kyung;Chun, Jong-Pil;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.601-614
    • /
    • 2018
  • Chitosan with a natural antimicrobial property has been introduced to protect horticultural crops from diseases as an environmentally friendly method. The purpose of this study was to investigate the effects of the pre-harvest application of chitosan on growth and quality during the late stage of fruit development and on the simulated marketing of the peach fruit (Prunus persica L.). The application of chitosan with calcium chloride ($100mg{\cdot}L^{-1}$) three times at one week intervals 4 weeks before the harvest significantly increased the fruit weight, changed the fruit shape, and reduced the fruit length/diameter ratio giving the peach fruits a round oblate shape. The calcium treatment contributed to enhancing or maintaining the storage potential by increasing the flesh firmness. However, at higher concentrations of $CaCl_2$, i.e., > $600mg{\cdot}L^{-1}$, the positive effects of the chitosan application were offset, and fruit growth was not affected by calcium alone. The application of the chitosan/calcium mixture delayed fruit softening; however, this effect was shortened when the storage temperature was $20^{\circ}C$ rather than $15^{\circ}C$. The internal quality of the fruit was profoundly affected by the concentration of calcium added to the chitosan, and delayed fruit maturation was observed at a higher concentration of calcium. The pre-harvest application of chitosan with calcium contributes to the enhancement of food safety by inhibiting the occurrence of diseases during postharvest handling. Considering the above results, chitosan has the potential to improve both the yield of peach fruits and their storability. Because chitosan can enhance the freshness and shelf-life of fresh produce, it is necessary to examine its effects on other horticultural crops.

Neutron Spectrum Measurement in $n/{\gamma}$ Mixed Field(1) ($n/{\gamma}$ 복합 방사선장에서의 중성자 스펙트럼 분리 측정연구(1))

  • Lee, Kwang-Pill;Kim, Wuon-Shik
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.501-508
    • /
    • 1993
  • In n/${\gamma}$ mixed field of $^{241}Am-Be$(${\alpha}$, n) neutron source, we seperated the neutron component from gamma ray component. At the center of the detector, $^6Li$ was doped on the cerium activated glass plate for $^6Li$(${\alpha}$, n)T nuclear reaction. The time differences of the light following excitations by different scintillators, BC501($C_8H_{10}$) and cerium, and by the same scintillator for different radiations as neutrons and gamma-rays are used to apply the methods of PSD(Pulse Shape Discriminator) and CFD(Constant Fraction Discriminator). The figure of merit of $^6Li$ fast neutron spectrometer is estimated as 1.36.

  • PDF

Thermoluminescence from X-Ray Irradiated Beta-Eucryptite (X-선 조사된 Beta-eucryptite의 열자극 발광)

  • 김태규;이병용;최범식;강현식;추성실;황정남
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 1992
  • In this study, beta-eucryptite is fabricated and the thermal parameters of this material have been investigated. The thermoluminescence from 4MeV X-ray irradiated beta-eucryptite have been measured over the temperature range of 300K-600K. Thermoluminescence curve from X-ray irradiated beta-eucryptite shows five peaks located at 342K, 392K, 438K, 474K, and 527K. $\tau$, $\delta$ and $\omega$ of peak at 527K are 35K, 39K and 74K, respectively and this peak is found to be 2nd order kinetics. The activation energy of peak shape method is calculated to be 1.03eV and the frequency factor for 527K curve is calculated to be 3.9x10$\^$8/sec$\^$-1/. Based on the various heating rates methods, the activation energy of the peak is computed to be 1.02${\pm}$0.05eV that is similar to 1.19${\pm}$0.03eV of initial rise method. The linearity of thermoluminescence intensity and radiation flux is valid up to 50Gy and beyond higher dose the supralinearity and saturation come out.

  • PDF

Modeling Dynamics of Nonconservative Pollutants in Streams with Pools and Riffles

  • Seo, Il-Won;Yu, Dae-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1993.07a
    • /
    • pp.175-182
    • /
    • 1993
  • The complex nature of low flow transport and tranformation of nonconservative pollutants in natural streams with pools and riffles has been investigated using a numerical solution of a proposed mathematical model that is based on a set of mass balance equations describing hydrodynamic processes (advection, dispersion, and mass exchange mechanicms in streams and in storage zones) and chemical processes (reaction or decay). In this study, a mathematical model (named "Storage-Transformation Model") has been developed to predict adequately the non-Fickian nature of mixing and transformation mechanisms for decaying substances in natural streams under low flow conditions. Comparisons between the concentration-time curves predicted usingthe proposed model and the measured stream data shows that the Storage-Transformation Model yields better agreements in the goneral shape, peak concentration and time to peak than the 1-D dispersion model. The result of this study also demonstrates the differences between transport in pool-and-riffle streams versus transport in more uniform channels. The proposed model shows significant improvement over the conventional 1-D disperision model in predicting natural mixing and stroage processes in streams through pools and riffles.

  • PDF

Numerical Study on the Improvement of the Motion Performance of a Light Buoy

  • Son, Bo-Hun;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.66-76
    • /
    • 2020
  • A light buoy is equipped with lighting functions and navigation signs. Its shape and colors indicate the route to vessels sailing nearby in the daytime, with its lights providing this information at night. It also plays a role in notifying the presence of obstacles such as reefs and shallows. When a light buoy operates in the ocean, the visibility and angle of light from the lantern installed on the buoy changes, which may cause them to function improperly. Therefore, it is necessary for the buoy to have stable and minimal motions under given environmental conditions, mainly waves. In this study, motion analyses for a newly developed lightweight light-buoy in waves were performed to predict the motion performance and determine the effect of the developed appendages for improving the motion performance. First, free decay tests, including benchmark cases, were performed using computational fluid dynamics (CFD) to estimate the viscous damping coefficients, which could not be obtained using potential-based simulations. A comparison was made of the results from potential-based simulations with and without considering viscous damping coefficients, which were estimated using CFD. It was confirmed that the pitch and heave motions of the buoy became smaller when the developed appendages were adopted.

Characteristics of debris resulting from simulated molten fuel coolant interactions in SFRS

  • E. Hemanth Rao;Prabhat Kumar Shukla;D. Ponraju;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.283-291
    • /
    • 2024
  • Sodium cooled Fast Reactors (SFR) are built with several engineered safety features and hence a severe accident such as a core melt accident is hypothetical with a probability of <10-6/ry. However, in case of such accidents, the mixture of the molten fuel and structural materials interacts with sodium. This phenomenon is known as Molten Fuel Coolant Interaction (MFCI) and results in fragmentation of the melt due to various instabilities. The fragmented particles settle as a debris bed on the core catcher at the bottom of the reactor vessel, and continue to generate decay heat. Characteristics of the debris particles play a vital role in heat transfer from the bed and need thorough investigation. The size, shape, and physical state of the debris depend on the associated fragmentation mechanism, superheating of the melt, and sodium temperature. Experiments have been conducted by releasing simulated corium, a molten mixture of alumina and iron generated by the aluminothermy process at ~2400 ℃ into liquid sodium, to study the fragmentation phenomena. After the experiment, the fragmented debris was retrieved and the particle size distribution was determined by sieve analysis. The debris was subjected to microscopic investigation for obtaining morphological characteristics. Based on the characteristics of debris, an attempt has been made to assess of fragmentation mechanism of simulated corium in sodium.

Light transmission in nanostructures

  • Kim, D. S.;Park, Q-H.;S. H. Han;Ch. Lienau
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.113-115
    • /
    • 2003
  • We investigate transmission of light in nanoscale structures. We present spatial and temporal domain measurements of the dephasing of surface plasmon excitations in metal films with periodic nano-hole arrays. By probing coherent spatial SP propagation lengths of a few f1. $\mu$m and an ultrafast decay of the SP polarization on a 10 fs timescale, we demonstrate that the SP transmission peaks are homogeneously broadened by the SP radiative lifetime. The pronounced wavelength and hole size dependence of the dephasing rate shows that the microscopic origin of the conversion of SP into light is a Rayleigh-like scattering by the periodic hole array. We have experimentally studied the dephasing of surface plasmon excitations in metallic nano-hole arrays. By relating nanoscopic SP propagation, ultrafast light transmission and optical spectra, we demonstrate that the transmission spectra of these plasmonic bandgap structures are homogeneously broadened. The spectral line shape and dephasing time are dominated by Rayleigh scattering of SP into light and can varied over a wide range by controlling the resonance energy and/or hole radius. This opens the way towards designing SP nano-optic devices and spatially and spectrally tailoring light -matter interactions on nanometer length scales.