• Title/Summary/Keyword: shaking table model test

Search Result 242, Processing Time 0.028 seconds

A Study on the Dynamic Behavior of Concrete Dam by Shaking Table Tests (진동대 시험을 이용한 콘크리트 댐의 동적거동 특성 연구)

  • Hwang, Seong-chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.806-812
    • /
    • 2005
  • This paper adresses the shaking table tests with 1/100 scaled model followed similitude law for OOdam main designing section to understand nonlinear behavior characteristics of concrete dam body by ground motion. As earthquake wave, Hachinohe and El Centre waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For maximum ground acceleration range $(0.3\~0.9 g)$, the results showed linear behavior regardless of maximum 9round acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3 cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8 g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8 g), it showed that the dam is stable for supporting upper stream Part of water tank of dam.

System Identification of MIMO Systems Considering Analytically Determined Information (해석적인 정보를 고려한 다중입력을 받는 다자유도계 구조물의 시스템 규명 기법 개발)

  • Kim, Saang-Bum;Spencer B. F., Jr.;Yun, Chung-Bang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.712-717
    • /
    • 2005
  • This paper presents a system identification method for multi-input, multi-output (MIMO) systems, by which a rational polynomial transfer function model is identified from experimentally determined frequency response function data. Analytically determined information is incorporated in this method to obtain a more reliable model, even in the frequency range where the excitation energy is limited. To verify the suggested method, shaking table test for an actively controlled two-story, bench-scale building employing an active mass damper is conducted. The results show that the proposed method is quite effective and robust for system identification of MIMO systems.

Accuracy assessment of real-time hybrid testing for seismic control of an offshore wind turbine supporting structure with a TMD

  • Ging-Long Lin;Lyan-Ywan Lu;Kai-Ting Lei;Shih-Wei Yeh;Kuang-Yen Liu
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.601-619
    • /
    • 2023
  • In this study, the accuracy of a real-time hybrid test (RTHT) employed for a performance test of a tuned mass damper (TMD) on an offshore wind turbine (OWT) with a complicated jacket-type supporting structure is quantified and evaluated by comparing the RTHT results with the experimental data obtained from a shaking table test (STT), in which a 1/25-scale model for a typical 5-MW OWT controlled by a TMD was tested. In the RTHT, the jacket-type OWT structure was modelled using both multiple-DOF (MDOF) and single-DOF (SDOF) numerical models. When compared with the STT test data, the test results of the RTHT show that while the SDOF model, which requires less control computational time, is able to well predict the peak responses of the nacelle and TMD only, the MDOF model is able to effectively predict both the peak and over-all time-history responses at multiple critical locations of an OWT structure. This also indicates that, depending on the type of structural responses considered, an RTHT with either an SDOF or a MDOF model may be a promising alternative to the STT to assess the effectiveness of a TMD for seismic mitigation in an OWT context.

Seismic Performance Evaluation of Externally Reinforced Panel Water Tank Using Shaking Table Tests (진동대 실험을 통한 외부보강형 판넬조립식 물탱크의 내진성능평가)

  • Park, Se-Jun;Won, Seong-Hwan;Choi, Moon-Seock;Kim, Sang-Hyo;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.151-157
    • /
    • 2013
  • In this study, an externally reinforced structural system for SMC(Sheet Molding Compound) panel water tank, designed according to the Japanese design code, is experimented to evaluate its seismic performance. The test tank is 3m long, 2m wide and 3m high, considering the capacity and size of the shaking table. The measured hydrodynamic pressures are found to be approximately 70% of the Japanese design code values. It may be partially due to the convex shape effect of the unit panels. The analytical results of externally reinforced system based on the measured dynamic water pressures are found in good agreement with the test results. If the design hydrodynamic pressures are estimated properly, the proposed analytical model for the externally reinforced water tank becomes a useful design tool and the Japanese design code is found to provide a safe design for the external frames of SMC panel water tank.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.

Experimental study on Chinese ancient timber-frame building by shaking table test

  • Zhang, Xi-Cheng;Xue, Jian-Yang;Zhao, Hong-Tie;Sui, Yan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.453-469
    • /
    • 2011
  • A one-story, wooden-frame, intermediate-bay model with Dou-Gon designed according to the Building Standards of the Song Dynasty (A.D.960-1279), was tested on a unidirectional shaking table. The main objectives of this experimental study were to investigate the seismic performance of Chinese historic wooden structure under various base input intensities. El Centro wave (N-S), Taft wave and Lanzhou wave were selected as input excitations. 27 seismic geophones were instrumented to measure the real-time displacement, velocity and acceleration respectively. Dynamic characteristics, failure mode and hysteretic energy dissipation performance of the model are analyzed. Test results indicate that the nature period and damping ratio of the model increase with the increasing magnitude of earthquake excitation. The nature period of the model is within 0.5~0.6 s, the damping ratio is 3~4%. The maximum acceleration dynamic magnification factor is less than 1 and decreases as the input seismic power increases. The frictional slippage of Dou-Gon layers (corbel brackets) between beams and plates dissipates a certain amount of seismic energy, and so does the slippage between posts and plinths. The mortise-tenon joint of the timber frame dissipates most of the seismic energy. Therefore, it plays a significant part in shock absorption and isolation.

Effects of Slope Location on the Boundary Condition in the 1g Shaking Table Test (1g 진동대시험에서 사면의 위치에 따른 경계조건 영향평가)

  • Jeong, Sugeun;Jin, Yong;Kim, Daeheyon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.535-545
    • /
    • 2022
  • Improving the stability of the ground in seismic design requires an understanding of the dynamic behavior of the ground under seismic loads. The shaking table test is an important methodology to provide this understanding. This study aimed to assess the influence on boundary conditions, as they are among the most important factors affecting the test. This was achieved by testing the influence of boundary conditions on the seismic responses of model slopes at different locations in the testing apparatus. A model slope was fabricated at different locations in a laminar shear box, and the influence of the boundary conditions was then measured. Each model slope was created at 100, 50, and 25 cm from the soil wall, and sine wave seismic loads of the same size were inputted. The results confirmed that the acceleration was amplified by the influence of the boundary in the case of the slope being located 25 cm from the boundary, whereas the influence of the boundary conditions decreased when the slope was located at 50~100 cm.

Verification of Real-time Hybrid Test System using RC Pier Model (RC교각을 이용한 실시간 하이브리드 실험 시스템의 적용성 연구)

  • Lee, Jinhaeng;Park, Minseok;Chae, Yunbyeong;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2018
  • Structure behaviors resulting from an earthquake are experimentally simulated mainly through a shaking table test. As for large-scale structures, however, size effects over a miniature may make it difficult to assess actual behaviors properly. To address this problem, research on the hybrid simulation is being conducted actively. This method is to implement numerical analysis on framework members that affect the general behavior of the structure dominantly through an actual scale experiment and on the rest parts by applying the substructuring technique. However, existing studies on hybrid simulation focus mainly on Slow experimental methods, which are disadvantageous in that it is unable to assess behaviors close to the actual level if material properties change depending on the speed or the influence of inertial force is significant. The present study aims to establish a Real-time hybrid simulation system capable of excitation based on the actual time history and to verify its performance and applicability. The hybrid simulation system built up in this study utilizes the ATS Compensator system, CR integrator, etc. in order to make the target displacement the same with the measured displacement on the basis of MATLAB/Simulink. The target structure was a 2-span bridge and an RC pier to support it was produced as an experimental model in order for the shaking table test and Slow and Real-time hybrid simulations. Behaviors that result from the earthquake of El Centro were examined, and the results were analyzed comparatively. In comparison with the results of the shaking table test, the Real-time hybrid simulation produced more similar maximum displacement and vibration behaviors than the Slow hybrid simulation. Hence, it is thought that the Real-time hybrid simulation proposed in this study can be utilized usefully in seismic capacity assessment of structural systems such as RC pier that are highly non-linear and time-dependent.

Displacements Behavior of Rock Slope by Shaking Table Test (진동대 실험을 통한 암반비탈면의 변위 거동 특성)

  • Yoon, Won-Sub;Kang, Jong-Chul;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.