• 제목/요약/키워드: shaker

검색결과 251건 처리시간 0.024초

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

경기도 해수욕장 모래의 안전성 확보를 위한 선행연구 (Preliminary Research on Securing the Stability of Sandy Beaches in Gyeonggi Province)

  • 최윤호;변주형;원종무;김종성;신종현;유창숙;정윤하;박민빈;오조교
    • 한국환경보건학회지
    • /
    • 제46권6호
    • /
    • pp.694-701
    • /
    • 2020
  • Objectives: The main purpose of this study is to evaluate heavy metal concentrations (Cd, As, Hg, Pb, Cr6+), particle size distribution, hydrochloric acid solubility, and parasite eggs in sand in five non-designated sandy beaches in Gyeonggi Province. Methods: The sampling sites are five non-designated Gyeonggi-do sandy beaches located in Ansan and Hwaseong. ICP-OES and UV, a Vibratory Sieve Shaker, and PCM were respectively used to analyze heavy metal concentrations, particle size distribution, and parasite eggs in the sand. Results: Heavy metals were detected within the beach's safety management standards and some of the detected As and Pb before and after beach opening were lower than one-quarter of the average value. In addition, the results of the T-test to confirm the As and Pb concentration changes before and after opening showed a significant difference in some beaches. The composition of sand was 86.53% according to the particle size distribution standard (2.0-0.02 mm), and the hydrochloric acid solubility was the highest at Gubongsolsup (4.9%) and the lowest at Bangameo-li (0.2%). Parasite eggs were undetected in all beach sand before and after opening. Conclusions: The safety of heavy metal concentrations in sandy beaches was secured in the selected five beaches in Gyeonggi Province. However, continuous efforts are required to make Gyeonggi-do's beaches suitable according to the Act on the Use and Management of Beaches.

WO3가 첨가된 TiO2 염료감응형 태양전지의 에너지 전환 효율 (Energy Conversion Efficiency of TiO2 Dye-sensitized Solar Cells with WO3 Additive)

  • 이성규;이영석
    • 공업화학
    • /
    • 제22권1호
    • /
    • pp.26-30
    • /
    • 2011
  • 염료 감응형 태양전지의 에너지 전환 효율을 향상시키고자 $TiO_2$$WO_3$을 첨가하여 광전극을 제조하고 그 전기화학적 특성 평가를 하였다. 또한 $WO_3$가 첨가된 $TiO_2$를 회쇄함으로써 회쇄 효과가 전지효율에 미치는 영향을 고찰하였다. I-V 곡선을 통하여 측정된 염료 감응형 태양전지의 효율은 $WO_3$ 첨가 및 회쇄 효과에 의하여 2.8에서 6.0%로 크게 증가하였다. 이와 같은 결과는 $TiO_2$의 전도대에서 전달되는 전자가 염료 및 전해질과 재결합되기 전에 $TiO_2$의 전도대보다 낮은 $WO_3$의 전도대를 통해 전달되기 때문에 전체 전류의 양이 증가되어 효율이 증가한 것으로 여겨진다. 또한, 임피던스 결과로부터 $TiO_2$/염료/전해질 계면의 저항 값이 감소하는 것을 확인하였다.

Long-Term Management of a Refractory Corticosteroid Responsive Tremor Syndrome

  • Kim, Soomin;Kim, Yoonji;Kim, Ji-Hee;Kim, Hyeon-Jin;Lee, Ji-Hye;Geum, Migyeong;Kim, Ha-Jung
    • 한국임상수의학회지
    • /
    • 제38권3호
    • /
    • pp.143-146
    • /
    • 2021
  • A 2-year-old intact female Maltese dog was presented with generalized involuntary tremors and nystagmus without regular direction. The dog was conscious the whole time while it was trembling. Its involuntary tremors were alleviated at rest or during sleep. Magnetic resonance imaging (MRI) revealed asymmetric hydrocephalus and caudal occipital malformation. In cerebrospinal fluid (CSF) analysis, a trace of protein was found and total nucleated cell count (TNCC) was slightly increased. However, infectious pathogens were not found. In complete blood count, there was a mild leukocytosis. After the patient received anticonvulsants (midazolam, phenobarbital, KBr), diuretics (furosemide) with an anti-inflammatory drug (prednisolone, 0.5 mg/kg PO bid), and a proton-pump inhibitor (omeprazole), it showed no improvement. The patient was tentatively diagnosed with corticosteroid responsive tremor syndrome. So the anticonvulsants and diuretics were discontinued and the dose of prednisolone was increased to an immunosuppressive dose (1 mg/kg PO bid). After administering the immunosuppressive dose of prednisolone, the patient did not show nystagmus. Its tremors were much alleviated. However, they did not disappear. Five weeks later, the patient showed gradual improvement but still was trembling when moving around. Nine weeks later, its tremors were similar to before. So diazepam (0.3 mg/kg PO sid) was added to the treatment. After that, its tremors were alleviated more. Prednisolone and diazepam were maintained for about five months, with tapering of the dose of prednisolone (until 0.5 mg/kg PO sid). About 7 months later after the treatment was started, the dog was trembling rarely except when it was excited. Therefore, diazepam was discontinued. This case describes a refractory white dog shaker syndrome successfully managed with long-term administration of a steroid and diazepam.

Is the RCEP a Cornerstone or Just Collaboration? Regional General Equilibrium Model Based on GAMS

  • Ahmed, Yosri Nasr;Delin, Huang;Reeberg, Benito Giovanni;Shaker, Victor
    • Journal of Korea Trade
    • /
    • 제24권1호
    • /
    • pp.171-207
    • /
    • 2020
  • Purpose - This paper investigates the potential effect of the Regional Comprehensive Economic Partnership (RCEP) on trade liberalization among member countries in order to answer key questions in our research on whether the RCEP will be a cornerstone or just collaboration. Furthermore, it aims to measure the likely magnitude of the economic impact it has on its members. Design/methodology - Toward achieving research objectives, we developed a regional CGE model based on the GTAP 9 database. Findings - The simulation results show Korea, Australia, India, and Japan ranked the top countries with an average growth in GDP of 0.38 %, 0.36%, 0.29%, and 0.23%, respectively. Moreover, China and New Zealand followed with a percentage of 0.12% each. The lower economic performing group is the ASEAN group due to a contraction in GDP by 0.13%. Accordingly, there was a positive impact of the RCEP agreement on all member states, as empirically demonstrated. Furthermore, Korea is one of the countries that will benefit most from joining this agreement. Finally, this agreement is important; it has many economic benefits to member states, but it is not a cornerstone. Originality/value - The examination of the quantitative effects of tariff removal among the RCEP's countries is its value. We will address all member countries of the convention simultaneously using a regional CGE model GAMS language, where we employed a Mathematical Programming System for General Equilibrium (MPSGE) to establish a Regional CGE model. This study is directed to policymakers looking at evaluating RCEP agreement.

Influence of loading method and stiffening on the behavior of short and long CFST columns

  • Shaker, Fattouh M.F.;Ghanem, Gouda M.;Deifalla, Ahmed F.;Hussein, Ibrahim S.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.295-307
    • /
    • 2022
  • The objective of this research is to study experimentally the behavior of stiffened steel tubes (CFSTs). Considered parameters are stiffening methods by through-bolts or shear connectors with different configurations. In addition, the effect of global (ratio between length to diameter) and local (proportion between diameter to thickness) slenderness ratios are investigated. Load application either applied on steel only or both steel and concrete is studied as well. Case of loading on steel only happens when concrete inside the column shrinks. The purpose of the research is to improve the behavior of CFSTs by load transfer between them and different stiffening methods. A parametric experimental study that incorporates thirty-three specimens is carried out to highlight the impact of those parameters. Different outputs are recorded for every specimen such as load capacities, vertical deflections, longitudinal strains, and hoop strains. Two modes of failure occur, yielding and global buckling. Shear connectors and through-bolts improve the ultimate load by up to 5% for sections loaded at steel with different studied global slenderness and local slenderness equal 63.5. Meanwhile, shear connectors or through bolts increase the ultimate load by up to 6% for global slenderness up to 15.75 for sections loaded on composite with local slenderness equals 63.50. Recommendations for future design code development are outlined.

Mathematical modeling of concrete beams containing GO nanoparticles for vibration analysis and measuring their compressive strength using an experimental method

  • Kasiri, Reza;Massah, Saeed Reza
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.73-79
    • /
    • 2022
  • Due to the extensive use of concrete structures in various applications, the improvement of their strength and quality has become of great importance. A new way of achieving this purpose is to add different types of nanoparticles to concrete admixtures. In this work, a mathematical model has been employed to analyze the vibration of concrete beams reinforced by graphene oxide (GO) nanoparticles. To verify the accuracy of the presented model, an experimental study has been conducted to compare the compressive strengths of these beams. Since GO nanoparticles are not readily dissolved in water, before producing the concrete samples, the GO nanoparticles are dispersed in the mixture by using a shaker, magnetic striker, ultrasonic devices, and finally, by means of a mechanical mixer. The sinusoidal shear deformation beam theory (SSDBT) is employed to model the concrete beams. The Mori-Tanaka model is used to determine the effective properties of the structure, including the agglomeration influences. The motion equations are calculated by applying the energy method and Hamilton's principle. The vibration frequencies of the concrete beam samples are obtained by an analytical method. Three samples containing 0.02% GO nanoparticles are made and their compressive strengths are measured and compared. There is a good agreement between our results and those of the mathematical model and other papers, with a maximum difference of 1.29% between them. The aim of this work is to investigate the effects of nanoparticle volume fraction and agglomeration and the influences of beam length and thickness on the vibration frequency of concrete structures. The results show that by adding the GO nanoparticles, the vibration frequency of the beams is increased.

하천 및 호소 내 퇴적물 재부유에 따른 중금속 및 영양염류 용출량 평가기법 동향 (Trends in Evaluation Techniques for Leaching of Heavy Metals and Nutrients according to Sediment Resuspension in Rivers and Lakes)

  • 윤상규;한서연;김해욱;곽인실;안진성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권5호
    • /
    • pp.1-11
    • /
    • 2023
  • The phenomenon of sediment resuspension in rivers and lakes causes contaminants (heavy metals and nutrients) accumulated in the sediment to leach into the overlying water. As a result, it can lead to changes in toxic effects and eutrophication in the aquatic ecosystem. In this regard, it is important to quantitatively determine the amount of contaminants leached during sediment resuspension. In this study, methods for assessing the amount of released contaminants and the types of contaminants potentially released due to sediment resuspension were studied and summarized. Methods for assessing leaching can be divided into three groups based on the principle of causing resuspension: (i) the oscillating grid chamber method, (ii) the mechanical stirrer method, and (iii) the shaker method. It was confirmed that the types of contaminants that can potentially be released include heavy metals bound to sulfides, as well as exchangeable and labile forms of heavy metals and nutrients. To effectively manage stable aquatic ecosystems in the future, a simplified leaching test method is needed to assess in advance the risks (i.e., changes in toxic effects and eutrophication) that sediment resuspension may pose to aquatic ecosystems.

Application of computer methods for the effects of nanoparticles on the frequency of the concrete beams experimentally and numerically

  • Chencheng Song;Junfeng Shi;Ibrahim Albaijan;H. Elhosiny Ali;Amir Behshad
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.19-25
    • /
    • 2023
  • Due to high application of concrete structures in construction industry, however, the quality improvement is essential. One of the new ways for this purpose is adding the nanoparticles to the concrete. In this work, vibration analysis of concrete beams reinforced by graphene oxide (GO) nanoparticles based on mathematical model has been investigated. For the accuracy of the presented model, the experimental study is done for comparing the compressive strength. Since the nanoparticles can not be solved in water without any specific process, at the first, GO nanoparticles should be dispersed in water by using shaker, magnetic striker, ultrasonic devices and finally mechanical mixer. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-Tanak model model is utilized for obtaining the effective properties of the beam including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the concrete beam is obtanied by analytical method. Three samples with 0.02% GO nanoparticles are built and its compressive strength is compared which shows a good accuracy with maximum 1.29% difference with mathematical model and other papers. The aim of this work from the theoretical study is investigating the effects of nanoparticles volume percentage and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the GO nanoparticles, the frequency is increased. For example, with enhancing the volume percent of GO nanoparticles from zero to 0.08%, the compressive strength is increased 48.91%. and 46.83%, respectively for two cases of with and without agglomeration.

Influence of opening location, shape, and size on the behavior of steel beam columns

  • Mona M. Fawzy;Fattouh M. F. Shaker;Alia M. Ayyash;Mohamed M. Salem
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.1-13
    • /
    • 2024
  • The objective of this research is to study experimentally and numerically the behavior of steel beam columns with openings. Although the presence of openings in the beam columns is inevitable, finding ways to maintain strength is crucial. The studied parameters are opening shape, the ratio between opening height to specimen height, the percentage of opening location from support to beam column length, and web slenderness. Experimental tests are conducted including twelve specimens to study the effect of these parameters and record failure load, load deflection curve, and stress strain curve. Two failure modes are observed: local and flexural buckling. Interaction curves plotted from finite element model analysis are also used to expand the parametric study. Changing the location of the opening can decrease failure load by up to 7% and 60% in both normal and moment ratios respectively. Increasing the opening dimension can lead to a drop in the axial ratio by up to 29% and in the moment ratio by up to 74%. The weakest beam column behavior is noticed in specimens with rectangular openings which results from uneven and concentrated stresses around the opening. The main results of this research illustrate that the best location for opening is at 40% - 50% from beam column support. Also, it is advisable to use circular openings instead of rectangular openings in specimens having slender webs because moment ratios are raised by 85% accompanied by a rise in normal ratios by 9%.