• Title/Summary/Keyword: shadow detection

Search Result 186, Processing Time 0.027 seconds

Shadow Detection Using a Nonuniform Quantization and Linearity of Shadow Brightness (비균일 양자화와 그림자 밝기의 선형성을 이용한 그림자 검출)

  • Hwang, Dong-Guk;Park, Jong-Cheon;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.278-281
    • /
    • 2008
  • 본 논문은 그림자 밝기의 선형적 변화를 비균일하게 양자화하여 그림자를 검출하는 기법을 제안한다. 그림자의 밝기의 선형성 적용은 기하학 정보, 광원의 종류 및 방위에 독립적일 수 있다는 장점이 있다. 이 기법은 그림자 밝기가 점진적으로 변하거나 변화가 없다는 가정과 그림자는 어둡다는 공리를 기반한다. 먼저, 전처리를 통하여 그림자 후보영상을 검출한다. 다음으로, 인접화소들 사이의 선형의존성을 낮추기 위하여 유사 밝기를 대표 밝기로 표현하기 위해 양자화 한다. 이때 선형성을 증가시키 위해 등비수열을 이용하여 비균일 양자화한다. 마지막으로, 그림자 밝기의 선형적 변화 특성을 이용하여 선형의존성이 높은 그림자를 검출한다. 임의의 단일 자연영상의 실험에서, 제안한 알고리즘은 본영과 단색 배경을 갖는 반영 및 셀프그림자의 검출에 강건함을 보였다.

  • PDF

Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model (영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법)

  • Choi, Na-Rae;Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

An Effective Retinal Vessel and Landmark Detection Algorithm in RGB images

  • Jung Eun-Hwa
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.27-32
    • /
    • 2006
  • We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.

  • PDF

A Technique to Detect the Shadow Pixels of Moving Objects in the Images of a Video Camera (비디오 카메라 영상 내 동적 물체의 그림자 화소 검출 기법)

  • Park Su-Woo;Kim Jungdae;Do Yongtae
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1314-1321
    • /
    • 2005
  • In video surveillance and monitoring (VSAM), extracting foreground by detecting moving regions is the most fundamental step. The foreground extracted, however, includes not only objects in motion but also their shadows, which may cause errors in following video image processing steps. To remove the shadows, this paper presents a new technique to determine shadow pixels in the foreground image of a VSAM camera system. The proposed technique utilizes a fact that the effect of shadowing to each pixel is different defending on its brightness in a background image when determining shadow pixels unlike existing techniques where unified decision criteria are used to all pixels. Such an approach can easily accommodate local features in an image and hold consistent Performance even in changing environment. In real experiments, the proposed technique showed better results compared with an existing technique.

  • PDF

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

Segmentation of underwater images using morphology for deep learning (딥러닝을 위한 모폴로지를 이용한 수중 영상의 세그먼테이션)

  • Ji-Eun Lee;Chul-Won Lee;Seok-Joon Park;Jea-Beom Shin;Hyun-Gi Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.370-376
    • /
    • 2023
  • In the underwater image, it is not clear to distinguish the shape of the target due to underwater noise and low resolution. In addition, as an input of deep learning, underwater images require pre-processing and segmentation must be preceded. Even after pre-processing, the target is not clear, and the performance of detection and identification by deep learning may not be high. Therefore, it is necessary to distinguish and clarify the target. In this study, the importance of target shadows is confirmed in underwater images, object detection and target area acquisition by shadows, and data containing only the shape of targets and shadows without underwater background are generated. We present the process of converting the shadow image into a 3-mode image in which the target is white, the shadow is black, and the background is gray. Through this, it is possible to provide an image that is clearly pre-processed and easily discriminated as an input of deep learning. In addition, if the image processing code using Open Source Computer Vision (OpenCV)Library was used for processing, the processing speed was also suitable for real-time processing.

Evaluating Applicability of Photochemical Reflectance Index using Airborne-Based Hyperspectral Image: With Shadow Effect and Spectral Bands Characteristics (항공 초분광 영상을 이용한 광화학반사지수 이용 가능성 평가: 그림자 영향 및 대체 밴드를 중심으로)

  • Ryu, Jae-Hyun;Shin, Jung Il;Lee, Chang Suk;Hong, Sungwook;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.507-519
    • /
    • 2017
  • The applications of NDVI (Normalized Difference Vegetation Index) as a vegetation index has been widely used to understand vegetation biomass and physiological activities. However, NDVI is not suitable way for monitoring vegetation stress because it is less sensitive to change in physiological state than biomass. PRI (Photochemical Reflectance Index) is well developed to present physiological activities of vegetation, particularly high-light-stress condition, and it has been adopted in several satellites to be launched in the future. Thus, the understanding of PRI performance and the development of analysis method will be necessary. This study aims to interpret the characteristics of light-stress-sensitive PRI in shadow areas and to evaluate the PRI calculated by other wavelengths (i.e., 488.9 nm, 553.6 nm, 646.9 nm, and 668.4 nm) instead of 570 nm that used in original PRI. Using airborne-based hyperspectral image, we found that PRI values were increased in shadow detection due to the reduction of high light induced physiological stress. However, the qualities of both PRI and NDVI data were dramatically decreased when the shadow index (SI) exceeded the threshold (SI<25). In addition, the PRI calculated using by 553.6 nm had best correlation with original PRI. This relationship was improved by multiple regression analysis including reflectances of RED and NIR. These results will be helpful to the understanding of physiological meaning on the application of PRI.

Change Detection Using the IKONOS Satellite Images (IKONOS 위성영상을 이용한 변화 탐지)

  • Kang, Gil-Seon;Shin, Sang-Cheul;Cho, Kyu-Jon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.61-66
    • /
    • 2003
  • The change detection using the satellite imagery and airphotos has been carried out in the application of terrain mapping, environment, forestry, facility detection, etc. The low-spatial resolution data such as Landsat, NOAA satellite images is generally used for automatic change detection, while on the other hand the high-spatial resolution data is used for change detection by image interpretation. The research to integrate automatic method with manual change detection through the high-spatial resolution satellite image is performed. but the problem such as shadow, building 'lean' due to perspective geometry and precision geocorrection was found. In this paper we performed change detection using the IKONOS satellite images, and present the concerning problem.

  • PDF

Efficient Multi-Touch Detection Algorithm for Large Touch Screen Panels

  • Mohamed, Mohamed G.A.;Cho, Tae-Won;Kim, HyungWon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.246-250
    • /
    • 2014
  • Large mutual capacitance touch screen panels (TSP) are susceptible to display and ambient noise. This paper presents a multi-touch detection algorithm using an efficient noise compensation technique for large mutual capacitance TSPs. The sources of noise are presented and analyzed. The algorithm includes the steps to overcome each source of noise. The algorithm begins with a calibration technique to overcome the TSP mutual capacitance variation. The algorithm also overcomes the shadow effect of a hand close to TSP and mutual capacitance variation by dynamic threshold calculations. Time and space filters are also used to filter out ambient noise. The experimental results were used to determine the system parameters to achieve the best performance.

Detection of Pulmonary Nodules' Shadow on Chest X-ray Image (흉부 X선 영상에 있어서 폐 종류 음영의 검출)

  • Kim, Eung-Kyeu;Lee, Do-Kyeom
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.293-294
    • /
    • 2007
  • The purpose of this study is prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Here we select two evaluation methods and make clear the effectiveness of multi-resolutional filter on an energy subtraction image.

  • PDF