• Title/Summary/Keyword: shRNAs

Search Result 26, Processing Time 0.032 seconds

Genomic Variation and Toxin Specificity of Ustilago maydis Viruses from Progeny Strains as a Result of Artificial Mating (Ustilago maydis의 Mating 과정에 따른 Virus 유전자의 변이에 관한 연구)

  • 강인식;이세원
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 1997
  • Ustilago maydis strains (A-series and SH-series) containg virus or viral dsRNAs were artificially mated in corn seedling to generate 6 progeny strains, designated A23, A45, A21l, A31O, SH24 and SH61O. The dsRNA patterns of progeny strains were identical to those of the parental strains and there was no molecular exclusion mechanism among dsRNAs of parental strains. Virus particles were purified from 6 progeny strains and viral dsRNAs were analyzed on 5% PAGE. There was no mixed encapsidation between virus or dsRNAs of parental strains. Progeny strain SH6l4 produced toxin which inhibits the growth of SH9, SHIO and SH11. Likewise, toxins from A310 and SH24 inhibited growth of the SH11 strains. These results indicate that the presence of different types of dsRNA does not interfere the expression of toxin gene.

  • PDF

Multiple shRNA expressing vector enhances efficiency of gene silencing

  • Song, Jun;Giang, An;Lu, Yingchun;Pang, Shen;Chiu, Robert
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.358-362
    • /
    • 2008
  • RNA interference (RNAi) is the process of sequence-specific gene silencing. However, RNAi efficiency still needs to be improved for effective inhibition of target genes. We have developed an effective strategy to express multiple shRNAs (small hairpin RNA) simultaneously using multiple RNA Polymerase III (Pol III) promoters in a single vector. Our data demonstrate that multiple shRNAs expressed from Pol III promoters have a synergistic effect in repressing the target gene. Silencing of endogenous cyclophilin A (CypA) or key HIV viral genes by multiple shRNAs results in significant inhibition of the target gene.

Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs

  • Oh, Jong-nam;Choi, Kwang-hwan;Lee, Chang-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.489-498
    • /
    • 2018
  • Objective: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.

Genomic Variation and Toxin Specificity of Ustilago maydis Virus Isolated in Korea (한국에서 분리된 Ustilago maydis 바이러스의 유전자의 변이와 독소의 특이성)

  • Hee, Hwang-Seon;Yie, Se won
    • Korean Journal of Microbiology
    • /
    • v.31 no.3
    • /
    • pp.184-188
    • /
    • 1993
  • Novel Ustilagomaydis strains, designated as SH1 to 14 containing new types of ds RNA segments, are identified from corn smut in Korea. Among 14 isolates, 7 isolates appear to posses virus particles and the other isolates may contain dsRNA as a plasmid form. The pattern of dsRNA is highly diverse form a typical P-type containing one or more of H, M, and L dsRNAs to the one containing one or move M dsRNAs. It is likely that the strains containing H dsRNA posses virus particles which were confirmed by sucrose density gradient followed with different range of specificity and the activity of the strain (SH14) is stronger than A4 toxin. The sensitivity of 14 isolates is also very diverse and two strains (SH10, SH11) appear tobe universal sensitve strains against 5 tested toxin samples.

  • PDF

RNAi-based Knockdown of Multidrug Resistance-associated Protein 1 is Sufficient to Reverse Multidrug Resistance of Human Lung Cells

  • Shao, Shu-Li;Cui, Ting-Ting;Zhao, Wei;Zhang, Wei-Wei;Xie, Zhen-Li;Wang, Chang-He;Jia, Hong-Shuang;Liu, Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10597-10601
    • /
    • 2015
  • Up-regulation of multidrug resistance-associated protein 1 (MRP1) is regarded as one of the main causes for multidrug resistance (MDR) of tumor cells, leading to failure of chemotherapy-based treatment for a multitude of cancers. However, whether silencing the overexpressed MRP1 is sufficient to reverse MDR has yet to be validated. This study demonstrated that RNAi-based knockdown of MRP1 reversed the increased efflux ability and MDR efficiently. Two different short haipin RNAs (shRNAs) targeting MRP1 were designed and inserted into pSilence-2.1-neo. The shRNA recombinant plasmids were transfected into cis-dichlorodiamineplatinum-resistant A549 lung (A549/DDP) cells, and then shRNA expressing cell clones were collected and maintained. Real time PCR and immunofluorescence staining for MRP1 revealed a high silent efficiency of these two shRNAs. Functionally, shRNA-expressing cells showed increased rhodamine 123 retention in A549/DDP cells, indicating reduced efflux ability of tumor cells in the absence of MRP1. Consistently, MRP1-silent cells exhibited decreased resistance to 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and DDP, suggesting reversal of MDR in these tumor cells. Specifically, MRP1 knockdown increased the DDP-induced apoptosis of A549/DDP cells by increased trapping of their cell cycling in the G2 stage. Taken together, this study demonstrated that RNAi-based silencing of MRP1 is sufficient to reverse MDR in tumor cells, shedding light on possible novel clinical treatment of cancers.

A Simple and Economical Short-oligonucleotide-based Approach to shRNA Generation

  • Kim, Jin-Su;Kim, Hyuk-Min;Lee, Yoon-Soo;Yang, Kyung-Bae;Byun, Sang-Won;Han, Kyu-Hyung
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.329-334
    • /
    • 2006
  • RNAi (RNA interference) has become a popular means of knocking down a specific gene in vivo. The most common approach involves the use of chemically synthesized short interfering RNAs (siRNAs), which are relatively easy and fast to use, but which are costly and have only transient effects. These limitations can be overcome by using short hairpin RNA (shRNA) expression vectors. However, current methods of generating shRNA expression vectors require either the synthesis of long (50-70 nt) costly oligonucleotides or multi-step processes. To overcome this drawback, we have developed a one-step short-oligonucleotides-based method with preparation costs of only 15% of those of the conventional methods used to obtain essentially the same DNA fragment encoding shRNA. Sequences containing 19 bases homologous to target genes were synthesized as 17- and 31-nt DNA oligonucleotides and used to construct shRNA expression vectors. Using these plasmids, we were able to effectively silence target genes. Because our method relies on the onestep ligation of short oligonucleotides, it is simple, less error-prone, and economical.

Identification of Differentially Expressed Genes in Nickel[li]-Treated Normal Rat Kidney Cells

  • Koh, Jae-Ki;Lee, Sang-Han
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.85-90
    • /
    • 2004
  • Nickel(II) compounds are carcinogenic metals which induce genotoxicity and oxidative stress through the generation of reactive oxygen species. In search of new molecular pathways toward understanding the molecular mechanism of nickel(II)-induced carcinogensis, we performed mRNA differential display analysis using total RNA extracted from nickel(II) acetate-treated normal rat kidney cells (NRK-52E). Cells were exposed for 3 days to 160 and 240 uM nickel(II) concentrations. cDNAs corresponding to mRNAs for which expression levels were altered by nickel(II) were isolated, sequenced, and followed by a GenBank Blast homology search. Specificity of differential expression of cDNAs was determined by RT-PCR and Western blot analysis. Two of them (SH3BGRL3 and FHIT) were down-regulated and one (metallothionein) was up-regulated by nickel(II) treatment. The expression of these mRNAs were nickel(II) concentration-dependent. The levels of FHIT and metallothionein proteins were also consistent with the results for mRNAs. Overall, although the fundamental questions related to function of these genes in nickel(II)-mediated carcinogenicity are not answered, our study suggests that they can be interesting candidates for studies of molecular mechanisms of nickel(II) carcinogenesis.

  • PDF

Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs

  • Kim, Doyeon;Kim, Jongkyu;Baek, Daehyun
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.412-417
    • /
    • 2014
  • It has been reported that exogenously introduced micro-RNA (exo-miRNA) competes with endogenously expressed miRNAs (endo-miRNAs) in human cells, resulting in a detectable upregulation of mRNAs with endo-miRNA target sites (TSs). However, the detailed mechanisms of the competition between exo- and endo-miRNAs remain uninvestigated. In this study, using 74 microarrays that monitored the whole-transcriptome response after introducing miRNAs or siRNAs into HeLa cells, we systematically examined the derepression of mRNAs with exo- and/or endo-miRNA TSs. We quantitatively assessed the effect of the number of endo-miRNA TSs on the degree of mRNA derepression. As a result, we observed that the number of endo-miRNA TSs was significantly associated with the degree of derepression, supporting that the derepression resulted from the competition between exo- and endo-miRNAs. However, when we examined whether the site proficiency of exo-miRNA TSs could also influence mRNA derepression, to our surprise, we discovered a strong positive correlation. Our analysis indicates that site proficiencies of both exo- and endo-miRNA TSs are important determinants for the degree of mRNA derepression, implying that the derepression of mRNAs in response to exo-miRNA is more complex than that currently perceived. Our observations may lead to a more complete understanding of the detailed mechanisms of the competition between exo- and endo-miRNAs and to a more accurate prediction of miRNA targets. Our analysis also suggests an interesting hypothesis that long 3'-UTRs may function as molecular buffer against gene expression regulation by individual miRNAs.

Silencing of Rac3 Inhibits Proliferation and Induces Apoptosis of Human Lung Cancer Cells

  • Liu, Tie-Qin;Wang, Ge-Bang;Li, Zheng-Jun;Tong, Xiang-Dong;Liu, Hong-Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3061-3065
    • /
    • 2015
  • Background: Rac3, a member of the Rac family of small guanosine triphosphatases (GTPases), regulates a variety of cell functions, including the organization of the cytoskeleton, cell migration, and invasion. Overexpression of Rac3 has been reported in several human cancers. However, the role of Rac3 in lung cancer (LC) has not been determined in detail. The purpose of this study was to investigate the effect of silencing of Rac3 expression in human LC cells and the consequences for cell survival. Materials and Methods: Lentivirus small hairpin RNA (shRNA) interference techniques were utilized to knock down the Rac3 gene. Gene and protein expression was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. LC cell apoptosis was examined by annexin V-APC /propidium iodide staining. Results: Efficient silencing of Rac3 strongly inhibited A549 cell proliferation and colony formation ability, and significantly decreased tumor growth. Moreover, flow cytometry analysis showed that knockdown of Rac3 led to G2/M phase cell cycle arrest as well as an excess accumulation of cells in the G1 and S phase. Conclusions: Thus, functional analysis using shRNAs revealed a critical role for Rac3 in the tumor growth of LC cells. shRNA silencing of Rac3 could provide an effective strategy to treat LC.