• 제목/요약/키워드: shRNA

검색결과 178건 처리시간 0.033초

분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사 (Characterization of β-agarase from Isolated Simiduia sp. SH-4)

  • 김재덕;이솔지;조정권;이동근;이상현
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.453-459
    • /
    • 2016
  • 경상남도 남해군 미조면 연안으로부터 채취한 해수를 Marine agar 2216 배지에 도말하여 한천분해활성을 보이는 SH-4 균주를 분리하였다. 선택된 SH-4 균주는 16S rDNA 염기서열분석을 통해 Simiduia sp. SH-4로 명명하였다. Simiduia sp. SH-4 균주의 배양액으로부터 한천분해효소를 획득하여 한천분해활성을 측정하였다. 한천분해활성의 강도에 있어서 Simiduia sp. SH-4 유래 한천분해효소의 최고활성은 120.4 U/l로 나타났다. 한천분해활성은 30℃에서 최고치를 나타내었으며, 30℃에서의 활성을 100%로 하였을 때 20℃에서 30%, 40℃에서 75%의 상대활성을 나타내었다. 최적 pH는 pH 6.0으로 pH 6.0의 활성을 100%로 하였을 때 pH 5.0과 pH 7.0에서 각각 91%와 59%의 상대활성을 나타내었다. TLC 분석 결과, Simiduia sp. SH-4는 neoagarotetraose 및 neoagarobiose 등의 neoagarooligosaccharides를 생성하는 것으로 보아 β-agarase를 생산하는 균주로 확인되었다. 따라서 Simiduia sp. SH-4균주와 이 균주가 생산하는 β-agarase는 식품, 화장품, 의약품 산업에서 기능성소재 생산자로서 유용하게 활용할 수 있을 것으로 기대된다.

Degradation of 3-Methyl-4-nitrophenol, a Main Product of the Insecticide Fenitrothion, by Burkholderia sp. SH-1 Isolated from Earthworm (Eisenia fetida) Intestine

  • Kim, Seon-Hwa;Park, Myung-Ryeol;Han, Song-Ih;Whang, Kyung-Sook;Shim, Jae-Han;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.281-287
    • /
    • 2007
  • Microorganisms were isolated from earthworm intestine and examined for their ability to degrade 3-methyl-4-nitrophenol (MNP), a main degradation product of the insecticide fenitrothion. An isolate that showed the best degradation of MNP was selected for further study. The 16S rRNA analysis showed that the isolate belongs to the genus of Burkholderia, close to phenanthrene-degrading Burkholderia sp. S4.9, and is named Burkholderia sp. SH-1. When time-course degradation of MNP by SH-1 was examined by high performance liquid chromatographic analysis, almost complete degradation of MNP was observed within 26 h. Colony forming unit value assays indicated that the isolate SH-1 was capable of utilizing MNP as a sole carbon source. SH-1 could also degrade p-nitrophenol (PNP) but could not degrade ortho-substituted nitroaromatics such as 2,4-, 2,6- and 2,5-dinitrophenol. Catechol was detected as the main degration product of MNP and PNP. SH-1 was also found in the soil from which earthworms were obtained. These results suggest that the dispersal of Burkholderia sp. SH-1 into different environment with the aid of earthworms is likely to play a role in bioremediation of the soil contaminated with MNP.

신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사 (Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase)

  • 이창은;이솔지;이동근;이상현
    • 한국미생물·생명공학회지
    • /
    • 제44권2호
    • /
    • pp.156-162
    • /
    • 2016
  • 본 연구에서는 신규 해양성 한천분해균을 분리하고, 이 균주가 생성하는 한천분해효소의 특성을 조사하였다. 경상남도 남해군 미조면 연안에서 채취한 해수를 Marine agar 2216 배지에 도말하여 한천분해세균을 선별하였다. 선택된 한천분해균주는 16S rDNA 염기서열분석을 통해 Maribacter 속 세균과 99% 유사하여 Maribacter sp. SH-1으로 명명하였다. 세포외로 분비되는 agarase는 Maribacter sp. SH-1 균주 배양액에서 획득하였으며, 이를 이용하여 특성을 조사하였다. Maribacter sp. SH-1 균주의 한천분해효소는 20, 30, 40, 50 및 60℃ 에서 각각 56, 62, 94, 100, 8%의 상대활성을 나타냈으며, pH 5, 6, 7 및 8에서 각각 15, 100, 60, 21%의 상대활성을 나타냈다. 세포외 agarase는 50℃ , pH 6인 20 mM Tris-HCl buffer를 사용하는 조건에서 최대활성(231 units/l)을 보였다. 한천이 sol 상태로 존재하는 50℃에서 최적활성을 보여 이 효소는 응용 가능성이 높다고 할 것이다. 효소 활성은 20, 30 및 40℃에서 30분 동안 열처리하였을 때 약 90% 이상의 상대활성을 보였다. TLC 분석 결과, Maribacter sp. SH-1 균주의 한천분해효소는 한천올리고당인 neoagarohexaose (34.8%), neoagarotetraose (52.2%) 및 neoagarobiose (13.0%)를 생성하는 것으로 보아 β-agarase로 확인되었다. 따라서 Maribacter sp. SH-1 균주와이 균주가 생산하는 β-agarase는 보습효과, 미백효과, 세균성장 억제 혹은 전분노화 방지 등의 기능을 가지는 한천올리고당의 생산에 유용할 것으로 기대된다.

해양성 Marinomonas sp. SH-2 균주가 생성하는 agarase의 분리 및 특성조사 (Characterization of Agarase Produced from the Isolated Marine Bacterium Marinomonas sp. SH-2)

  • 조정권;이솔지;이동근;이상현
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.198-203
    • /
    • 2016
  • 본 연구에서는 많은 생리활성 기능을 갖는 한천올리고당과 네오한천올리고당을 생산할 수 있는 agarase를 생성하는 신규 해양성 세균을 분리하고, 이 균주가 생성하는 한천분해효소의 특성을 조사하였다. 한천분해활성을 가진 신규의 SH-2 균주는 경상남도 남해군 연안에서 채취한 해수에서 분리하였으며, 16S rDNA 염기서열분석을 통해 Marinomonas 속 세균과 약 99% 유사하여 Marinomonas sp. SH-2로 명명하였다. Agarase는 Marinomonas sp. SH-2 균주의 배양액으로부터 추출하였으며, 한천분해활성을 측정한 결과, pH 6.0의 20 mM Tris-HCl buffer를 사용할 경우 30℃에서 최고 활성(170.2 units/l)이 나타났다. 하지만, 40℃ 이상의 온도에서 0.5시간 이상 처리할 경우 효소의 잔존활성이 40% 이하로 감소하는 것으로 보아 이 효소는 내열성을 가지지 않는다고 판단되었다. 효소의 가수분해산물을 TLC로 분석한 결과, Marinomonas sp. SH-2으로부터 생성되는 효소는 아가로스를 분해하여 neoagarohexaose와 neoagarotetraose를 생성하여 β-agarase로 확인되었다. 따라서 Marinomonas sp. SH-2와 이 균주의 한천분해효소는 식품, 화장품, 의약품 연구 등에 실용적으로 적용할 수 있을 것이다.

Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer

  • Paek, A Rome;Mun, Ji Young;Hong, Kyeong-Man;Lee, Jongkeun;Hong, Dong Wan;You, Hye Jin
    • BMB Reports
    • /
    • 제50권12호
    • /
    • pp.621-627
    • /
    • 2017
  • We previously reported the involvement of zinc-finger protein 143 (ZNF143) on cancer cell motility in colon cancer cells. Here, ZNF143 was further characterized in breast cancer. Immunohistochemistry was used to determine the expression of ZNF143 in normal tissues and in tissues from metastatic breast cancer at various stages. Notably, ZNF143 was selectively expressed in duct and gland epithelium of normal breast tissues, which decreased when the tissue became malignant. To determine the molecular mechanism how ZNF143 affects breast cancer progression, it was knocked down by infecting benign breast cancer cells with short-hairpin (sh) RNA-lentiviral particles against ZNF143 (MCF7 sh-ZNF143). MCF7 sh-ZNF143 cells showed different cell-cell contacts and actin filament (F-actin) structures when compared with MCF7 sh-Control cells. In migration and invasion assays, ZNF143 knockdown induced increased cellular motility in breast carcinoma cells. This was reduced by the recovery of ZNF143 expression. Taken together, these results suggest that ZNF143 expression contributes to breast cancer progression.

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Short hairpin RNA targeting of fibroblast activation protein inhibits tumor growth and improves the tumor microenvironment in a mouse model

  • Cai, Fan;Li, Zhiyong;Wang, Chunting;Xian, Shuang;Xu, Guangchao;Peng, Feng;Wei, Yuquan;Lu, You
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.252-257
    • /
    • 2013
  • Fibroblast activation protein (FAP) is a specific serine protease expressed in tumor stroma proven to be a stimulatory factor in the progression of some cancers. The purpose of this study was to investigate the effects of FAP knockdown on tumor growth and the tumor microenvironment. Mice bearing 4T1 subcutaneous tumors were treated with liposome-shRNA complexes targeting FAP. Tumor volumes and weights were monitored, and FAP, collagen, microvessel density (MVD), and apoptosis were measured. Our studies showed that shRNA targeting of FAP in murine breast cancer reduces FAP expression, inhibits tumor growth, promotes collagen accumulation (38%), and suppresses angiogenesis (71.7%), as well as promoting apoptosis (by threefold). We suggest that FAP plays a role in tumor growth and in altering the tumor microenvironment. Targeting FAP may therefore represent a supplementary therapy for breast cancer.

MSP58 Knockdown Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma in Vitro and in Vivo

  • Xu, Chun-Sheng;Zheng, Jian-Yong;Zhang, Hai-Long;Zhao, Hua-Dong;Zhang, Jing;Wu, Guo-Qiang;Wu, Lin;Wang, Qing;Wang, Wei-Zhong;Zhang, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3233-3238
    • /
    • 2012
  • Esophageal carcinoma (EC) is one of the most aggressive cancers with a poor prognosis. Understanding the molecular mechanisms underlying esophageal cancer progression is a high priority for improved EC diagnosis and prognosis. Recently, MSP58 was shown to behave as an oncogene in colorectal carcinomas and gliomas. However, little is known about its function in esophageal carcinomas. We therefore examined the effects of MSP58 knockdown on the growth of esophageal squamous cell carcinoma (ESCC) cells in vitro and in vivo in order to gain a better understanding of its potential as a tumor therapeutic target. We employed lentiviral-mediated small hairpin RNA (shRNA) to knock down the expression of MSP58 in the ESCC cell lines Eca-109 and EC9706 and demonstrated inhibition of ESCC cell proliferation and colony formation in vitro. Furthermore, flow cytometry and western blot analyses revealed that MSP58 depletion induced cell cycle arrest by regulating the expression of P21, CDK4 and cyclin D1. Notably, the downregulation of MSP58 significantly inhibited the growth of ESCC xenografts in nude mice. Our results suggest that MSP58 may play an important role in ESCC progression.

Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs

  • Kim, Doyeon;Kim, Jongkyu;Baek, Daehyun
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.412-417
    • /
    • 2014
  • It has been reported that exogenously introduced micro-RNA (exo-miRNA) competes with endogenously expressed miRNAs (endo-miRNAs) in human cells, resulting in a detectable upregulation of mRNAs with endo-miRNA target sites (TSs). However, the detailed mechanisms of the competition between exo- and endo-miRNAs remain uninvestigated. In this study, using 74 microarrays that monitored the whole-transcriptome response after introducing miRNAs or siRNAs into HeLa cells, we systematically examined the derepression of mRNAs with exo- and/or endo-miRNA TSs. We quantitatively assessed the effect of the number of endo-miRNA TSs on the degree of mRNA derepression. As a result, we observed that the number of endo-miRNA TSs was significantly associated with the degree of derepression, supporting that the derepression resulted from the competition between exo- and endo-miRNAs. However, when we examined whether the site proficiency of exo-miRNA TSs could also influence mRNA derepression, to our surprise, we discovered a strong positive correlation. Our analysis indicates that site proficiencies of both exo- and endo-miRNA TSs are important determinants for the degree of mRNA derepression, implying that the derepression of mRNAs in response to exo-miRNA is more complex than that currently perceived. Our observations may lead to a more complete understanding of the detailed mechanisms of the competition between exo- and endo-miRNAs and to a more accurate prediction of miRNA targets. Our analysis also suggests an interesting hypothesis that long 3'-UTRs may function as molecular buffer against gene expression regulation by individual miRNAs.