• Title/Summary/Keyword: sex steroid hormone

Search Result 85, Processing Time 0.028 seconds

Identification of Genes Differentially Expressed in the MCF-7 Cells Treated with Mitogenic Estrogens

  • Cheon, Myeong-Sook;Yoon, Tae-Sook;Lee, Do-Yeon;Choi, Go-Ya;Lee, A-Yeong;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Estrogens, a group of steroid compounds functioning as the primary female sex hormone, play an important role in the development and progression of breast cancer. In this study, using a novel annealing control primer-based GeneFishing PCR technology, five differentially expressed genes (DEGs), expressed using 10nM mitogenic estrogens, $17{\beta}$-estradiol (E2) and $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1), were selected from the estrogen receptor (ER)-positive MCF-7 human breast cancer cells. The DEGs, MRPL42, TUBA1B, SSBP1, KNCT2, and RUVBL1, were identified by comparison with the known genes via direct sequencing and sequence homology search in BLAST. Quantitative real-time PCR data showed that two DEGs, tubulin ${\alpha}1b$ and kinetochore associated 2, were greater than 2-fold upregulated by E2 or $16{\alpha}$-OHE1. Both genes could be new biomarkers for the treatment and prognosis of cancers, and further study may provide insights into the molecular mechanisms underlying development and progression of breast cancer.

Effect of progesterone on insulin-like growth factors(IGFs) and IGF-binding proteins(IGFBPs) in female rat (암컷 랫트에서 Progesterone투여가 Insulin-like Growth Factors(IGFs) 및 IGF-binding proteins(IGFBPs)에 미치는 효과)

  • Jin, Song-Jun;Park, Soo-Hyun;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.4
    • /
    • pp.459-467
    • /
    • 2002
  • The sex steroid hormone progesterone is essential for normal development and maturation of the endometrium in preparation for the embryo implantation and the maintenance of pregnancy. Insulin-like growth factor (IGF) system that is composed of IGF-I, IGF-II, IGF binding proteins (IGFBPs) is also involved in the maintenance of pregnancy. In addition, liver, kidney, and uterus is a target tissue for IGF system. However, the effect of exogenous progesterone on IGF system was not elucidated in female rats. Therefore, we investigated the effect of progesterone on insulin-like growth factors (IGFs) and IGF-binding proteins in serum, liver, kidney, and uterus in female ovariectomized rats. IGFs concentration was measured by radioimmuoassay (RIA) and IGFBPs levels by western ligand blotting(WLB). IGF-I concentration was increased in serum, liver, and uterus, but not in kidney of progesterone-treated ovariectomized rats, compared to control (P<0.05). IGF-II concentration was decreased in liver, but not in serum, kidney, and uterus of progesterone-treated rats, compared to control (P<0.05). IGFBP-3 was increased in serum, but not in liver of progesterone-treated rats, compared to control. IGFBP-2 was decreased in kidney, but not in others tissues of progesterone-treated rats, compared to control. These results suggest that progesterone may exert diverse physiological functions via the tissue-specific regulation of IGFs/IGFBPs system in female rats.

Two Korean girls with complete androgen insensitivity syndrome diagnosed in infancy

  • Heo, You Jung;Ko, Jung Min;Lee, Young Ah;Shin, Choong Ho;Yang, Sei Won;Kim, Man Jin;Park, Sung Sub
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Androgen insensitivity syndrome (AIS) is a rare genetic disease caused by various abnormalities in the androgen receptor (AR). The AR is an essential steroid hormone receptor that plays a critical role in male sexual differentiation and development and preservation of the male phenotype. Mutations in the AR gene on the X chromosome cause malfunction of the AR so that a 46,XY karyotype male has some physical characteristics of a woman or a full female phenotype. Depending on the phenotype, AIS can be classified as complete, partial or mild. Here, we report 2 cases of complete AIS in young children who showed complete sex reversal from male to female as a result of AR mutations. They had palpable inguinal masses and normal female external genitalia, a blind-end vagina and absent $M{\ddot{u}}llerian$ duct derivatives. They were both 46,XY karyotype and AR gene analysis demonstrated pathologic mutations in both. Because AIS is inherited in an X-linked recessive manner, we performed genetic analysis of the female family members of each patient and found the same mutation in the mothers of both patients and in the female sibling of case 2. Gonadectomy was performed in both patients to avoid the risk of malignancy in the undescended testicles, and estrogen replacement therapy is planned for their adolescence. Individuals with complete AIS are usually raised as females and need appropriate care.

Effects of Estrogen on the Transcriptional Activities of Catecholamine Biosynthesizing Enzymes in the Brain and Adrenal Gland of Ovariectomized Rats (난소 절제 흰쥐의 뇌와 부신에서의 Catecholamine Biosynthesizing Enzyme들의 전사에 미치는 Estrogen의 효과)

  • 유경신;이종화;최돈찬;이성호
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • Dopamine(DA), norepinephrine(NE), and epinephrine(E) belong to a class of neurotransmitters known as catecholamine (CA) which are synthesized and secreted by mammalian brain and adrenal medulla. CA regulate several behavior patterns connected with breeding, and regulate GnRH-gonadotropin hormone axis' vitality between hypothalamus-pituitary gland linking with reproduction freeze. The present study examined effects of sex steroid hormone on the transcriptional activities of CA biosynthesis enzymes, tyrosine hydroxylase(TH), dopamine $\beta$ -hydroxylase(DBH), and phenylethaolamine-N-methyl transferase(PNMT). Mature female rats were ovariectomized(OVX) and implanted with 17 $\beta$-estradiol(E$_2$: 500 $\mu\textrm{g}$/ml) or sesame oil. Forty-eight hours after implantation all the animals were sacrificed. Total RNAs were extracted immediately and were applied to semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR). The expression level of TH was appeared by hypothalamus > SNc> adrenal medulla orders in OVX+Oil group, and by SNc > hypothalamus) adrenal medulla orders in OVX+E$_2$ group. Treatment with E$_2$ significantly increased TH expression in SNc and adrenal medulla but in hypothalamus, the reduced TH expression was observed. The expression level of DBH was appeared by adrenal medulla > SNc > hypothalamus orders in OVX+Oil group and in OVX+E$_2$ group. Administration of E$_2$ significantly reduced DBH expression in SNc, and increased in adrenal medulla. Two cDNA products, large(PNMT1) and small(PMNTs) species of 110bp difference, were amplified in SNc and hypothalamus, but only PNMTs was observed in adenal medulla. The PNMTs expression level was in the order of adrenal medulla > hypothalamus > SNc in both OVX+Oil and OVX+E$_2$ group. The PNMTs expression in SNc and adrenal medulla was significantly increased byE$_2$. The present report demonstrated that estrogen effects on transcriptional activities for CA biosynthethic enzymes were tissue specific in adrenal medulla as well as different region of brain. These results suggest that it might be crucial relationship between the type of estrogen receptor and CA enzyme gene expression.

  • PDF

Studies on the Sex Hormone Level is Serum of Puerperal Sow (돼지에 있어서 분만전후(分娩前後)의 혈청(血淸) 성(性) Hormone 수준(水準)에 관(關)한 연구(硏究))

  • Lee, Kyu Seung;Park, Chang Sik
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.64-71
    • /
    • 1981
  • The present study was carried out to study the serum concentration of peptide and steroid hormones in puerperal sow. Eight crossbred sows were used for collection of blood samples from day 20 prepartum to day 20 postpartum. FSH, LH, prolactin, estradiol-$17{\beta}$, progesterone and cortisol were assayed by radioimmunoassay methods. The mean serum FSH did not vary during the puerperal period and ranged from $8.1{\pm}1.8mIU/ml$ to $9.0{\pm}2.3mIU/ml$. LH concentrations increased from $2.6{\pm}0.3mIU/ml$ at day 20 prepartum to $3.9{\pm}1.1mIU/ml$ at the time of parturition, reached $3.2{\pm}0.9mIU/ml$ by day+2 and remained quite constant therafter. Prolactin reached a peak mean level of $68.5{\pm}9.5ng/ml$ at day 0. Estradiol-$17{\beta}$ increased from $205.0{\pm}29.5pg/ml$ at day 6 prepartum to $425.0{\pm}35.0pg/ml$ at the time of parturition. Progesterone remained fairly constant ($18.4{\pm}1.6$ to $20.2{\pm}2.1ng/ml$) from 20 to 6 days before parturition, began to decline on day-2, reached $0.9{\pm}0.3ng/ml$ by day+2 and remained quite constant thereafter. Cortisol reached a peak level of $86.5{\pm}10.5ng/ml$ at the day 0.

  • PDF

Changes in Plasma Sex Steroid Hormone and Vitellogenin Levels during Gonadal Development of the Spotted Flounder, Verasper variegatus (범가자미, Verasper variegatus의 생식소 발달단계에 따른 혈중 난황단백전구체 (vitellogenin)와 성 스테로이드 호르몬 변화)

  • KIM Yoon;BAEK Hea-Ja;HAN Chang-Hee;AIDA Katsumi;KOBAYASHI Makito
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.624-628
    • /
    • 1999
  • Annual plasma levels of vitellogenin and sex steroids were investigated in relation to the gonadal development for understanding the endocrine control of reproduction in spotted flounder, Verasper variegatus. The plasma vitellogenin level was highest, 6.36 mg/ml, in November when vitellogenesis was most active. The level, thereafter, decreased to 3.81 mg/ml in December with the initiation of spawning. On the other hand, estradiol-17 $\beta$ was highest, 2.7 ng/ml, in December, and rapidly decreased in January when spawning occurred. The decreased level of estradiol-17$\beta$, around 0.2 ng/ml, remained unchanged until May. The profiles of plasma testosterone were similar to those of estradiol-17$\beta$ in the fish, The plasma 17 $\alpha$-hydroxyprogesterone level was relatively low throughout the spawning period, but increased slightly with the initiation of ovarian development, In males, the plasma testosterone and 11-ketotestosterone were highest in December when spermiation actively proceeded, but rapidly decreased during the spawning period (January).

  • PDF

Effects of Castration and Ovariectomy on Plasma Hormone Concentration in rigs (돼지의 거세와 난소 적출이 혈중 호르몬 농도의 변화에 미치는 영향)

  • 박종대;황보종;박준철;박무균;최선호;박창식;윤종택
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.45-51
    • /
    • 2003
  • This study was conducted to investigate the effects of castration and ovariectomy on growth performance and plasma hormone concentration in pigs. A total of 48 pigs of 35 days of age were used. The results obtained in the present study are summarized as follows: 1. No significant difference was found in average daily gain between ovariectomy group (898.6g) and control gilt group (862.7g), and between castration group (926.0g) and control boar group (945.5g), respectively. Average daily gain of control boar group, however, was significantly higher than that of control gilt group (p<0.05). There was no significant difference in feed/gain between ovariectomy and control gilt group and between castration and control boar group, respectively. Backfat thickness was significantly (p<0.05) higher in ovariectomy or castration group than in control gilt or boar group, respectively. 2. Plasma concentration of IGF-I was significantly (p<0.05) increased during the period of 5 weeks of age (45.1 $\pm$0.72 ng/ml) to 15 weeks of age (356.3$\pm$3.05 ng/ml), and maintained constantly afterwards in control gilt group, as was in control boar group. That of ICF-I tended to be lower in ovariectomy or castration group than in control gilt or boar group, respectively. Regarding steroid hormones of estradiol-17$\beta$, progesterone, and testosterone, the concentration was extremely low at 5 weeks of age, however, increased from 11 weeks to 23 weeks of age in control gilt or boar group, while it was nearly under detection limit in ovariectomy or castration group. 3. Chemical compositions of pork loins were not affected by ovariectomy or castration, except that crude ash content was significantly (p<0.05) higher in castration group than in control boar group. These results indicated that ovariectomy or castration had no effects on growth performance and feed utilization. However, the concentration of sex steroid hormones was under detection limit in ovariectomy and castration group. Further studies, however, are needed to develope the techniques which minimize the stress related with castration or ovariectomy for the production of high quality pork.

Effects of Anabolic Steroids of Pork on Proliferation and Differentiation of Myogenic Satellite Cell (돼지 고기의 아나볼릭 스테로이드가 Myogenic Satellite Cell의 증식과 분화에 미치는 영향)

  • Lee, Dong-Mok;Lee, Ki-Ho;Cheon, Yong-Pil;Chun, Tae-Hoon;Choi, In-Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.842-850
    • /
    • 2010
  • Sex steroids are known to be involved in skeletal muscle development (anabolic effect) and are frequently used in medicines. It has been known that pork contains a variety of steroids that are mainly synthesized in the gonads (testis and ovary). Thus, the present study was conducted to evaluate the effects of anabolic steroids of pork on the proliferation and differentiation of myogenic satellite cells (MSC). Three different methods (M1, M2, and M3) were developed for the isolation and purification of steroids from porcine tissues. Among three extraction methods that we developed, M3 was the best method with respect to the quantities of steroids and the induction of MSC proliferation. Hormonal analysis showed that the steroid hormone levels were the highest in muscle and fat of intact male than those of castrated males and females. In addition, the highest serum levels of nandrolone and testosterone were detected in intact males, whereas estrone and $17{\beta}$-estradiol levels were similar in the entire experimental serum samples. Expression of androgen receptor (AR), myoD, desmin, and myogenin in bovine muscle cells were significantly up-regulated by the treatment of steroid extracts. The highest increas of myogenin and AR mRNA abundance were observed in the MSCs treated with M3 extract (p<0.001). Altogether, the present research showed the positive effect of steroids on MSC proliferation and differentiation in vitro. These results would certainly imply a beneficial effect of pork consumption on human muscle development.

Testicular Development and Serum Levels of Gonadal Steroids Hormone during the Annual Reproductive Cycle of the Male Koran Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et jeon) 수컷의 생식주기에 따른 정소 발달과 혈중 생식소 스테로이드의 변화)

  • 이원교;양석우
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.475-485
    • /
    • 1998
  • To clarify annual reproductive cycle of Koran dark sleeper, odontobutis platycephala, we examined the seasonal changes of gonadosomatic index(GSI), testicular development stages and sex steroid hormones in blood from December 1995 to November 1997. Testis was podlike shape from July to October, and tadpole-like shape from November because of its expanded posterior part. GSI was 0.14~0.18 from July to September and increased to $0.43{\pm}0.04$ in October and then was not changed significantly until February. GSI was reincreased to $0.52{\pm}0.09$ from March and then was kept at similer levels until May, but fell down to $0.28{\pm}0.05$ in June. As results of histological observation, testis was divided into 3 parts(anterior, boundary, posterior) in the development progress of germ cells. In July, the testis was composed of only spermatogonia without seminiferous tubules in most fishes. In the anterior part of testis, the ferquency of spermatogenesis stage seminiferous tubules appearing in August was more than 80% from September to December. decreased gradually from January to March and drastically in April, and then disappeared in June. The frequency of spermiogenesis stage seminiferous tubules appearing in December, increased gradually from January to March and drastically to 80% in April, and reached to 90% the highest levels of the year in June. Post-spawning stage seminiferous tubules did not appear throughout the year. The frequency of spermatogonia was 100% and 65% in July and August, and less than 20% in the rest period of the year. In the boundary part, the frequency of spermatogenesis stage seminiferous tubules appearing in August increased from September and reached to 82% in November, decreased from December, adn disappeared in March. The frequency of spermiogenesis stage seminiferous tubules appearing in November was less than 18% until February, and increased to 29%~57% from March to June. The frequency of post-spawning stage seminiferous tubules appeared 12%~25% only from March to June. The frequency of spermatogonia was 100% in July, decreased to 85% in August and 10% in November, and increased gradually from December to 50% in April, and decreased again from May to June. In the posterior part, seminiferous tubules with some seminiferous tubules increased drastically 80%~85% in August and September, decreased drastically from October to November and remained below 10% until February, and disappeared after March. The frequency of spermiogenesis stage seminiferous tubules appearing in August increased sharply from October and reached to 75% in November. decreased to 15% in December and no significant changes until March, and disappeared after April. The frequency of post-spawning stage seminiferous tubules appearing very early in November increased to 82% in December and 85%~95% until June. The frequency of spermatogonia was 100% in July, decreased drastically to 15% in August, disappeared from October to Mrch, but reappeared from April and kept at less than 10% until June. The blood level of testosterone (T) increrased gradually from August was $0.61{\pm}0.09 ng/m\ell$ in November, increrased drastically to $3.99{\pm}1.22 ng/m\ell$ in December and maintained at in similar level until March, and decreased to $0.25{\pm}0.14 ng/m{\ell} ~ 0.17{\pm}0.13ng/m{\ell}$ in April and May and no significant changes until July (P<0.05). The blood level of 17, 20 -dihydroxy-4-pregnen-3-one $ng/m{\ell}$in the rest of year without significant changes(P<0.05). Taken together these results, the germ cell development of testis progressed in the order of posterior, boundary, anterior part during annual reproductive cycle in Korean dark sleeper. The testicular cycle of Korean dark sleeper was as follows. The anterior part of testis : i.e. spermatogonial proliferation period (July), early maturation period (from August to November), mid maturation period (from December to March), late maturation period (from April to May) and functional maturation period (June) were elucidated. The boundary of testis, i.e. spermatogonial proliferation period (July), early maturation period (from August to October), mid maturation period (from November to February) and the coexistence period of late maturation, functional maturation and post-spawn (from March to June) were elucidated. The posterior of testis, i.e. spermatogonial proliferation period (July), mid maturation period (from August ot September), late maturation period (October), functional maturation period (November) and post-spawn period (from December to June) were elucidated. It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of Korean dark sleeper.

  • PDF

Inhibition of Hypoxia-induced Apoptosis in PC12 Cells by Estradiol

  • Jung, Ji-Yeon;Roh, Kwang-Hoon;Jeong, Yeon-Jin;Kim, Sun-Hun;Lee, Eun-Ju;Kim, Min-Seok;Oh, Won-Mann;Oh, Hee-Kyun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.231-238
    • /
    • 2005
  • Neuronal apoptotic events, which result in cell death, are occurred in hypoxic/ischemic conditions. Estradiol is a female sex hormone with steroid structure known to provide neuroprotection through multiple mechanisms in the central nervous system. This study was aimed to investigate the signal transduction pathway of $CoCl_2$-induced neuronal cell death and the inhibitory effects of estradiol. Administration of $CoCl_2$ decreased cell viability in both a dose- and time-dependent manner in PC12 cells. $CoCl_2$-induced cell death produced genomic DNA fragmentation and morphologic changes such as cell shrinkage and condensed nuclei. It was found that $CoCl_2$-treated cells increased the reactive oxygen species (ROS) as well as caspase-8, -9 and -3 activities. However, pretreatment with estradiol before exposure to $CoCl_2$ prevented the reduction in cell viability reduction and attenuated DNA fragmentation and morphologic changes caused by $CoCl_2$. Furthermore, the $CoCl_2$-induced increases of ROS levels and caspases activities were attenuated by estradiol. Gene expression analysis revealed that estradiol blocked the underexpression of the Bcl-2 and ameliorated the increase in the release of cytochrome c from mitochondria into cytoplasm and Fas-ligand (Fas-L) upregulated by $CoCl_2$. These results suggest that $CoCl_2$ induce apoptosis in PC12 cells through both mitochondria- and death receptor-mediated cell death pathway. Estradiol was found to have a neuroprotective effect against $CoCl_2$-induced apoptosis through the inhibition of ROS production and by modulating apoptotic effectors associated with the mitochondria- and death-dependent pathway in PC12 cells.