• Title/Summary/Keyword: sewer

Search Result 715, Processing Time 0.021 seconds

A Study on Improvement of Inflow/Infiltration Computation and Application Method in Sewer Rehabilitation Project (하수관거정비사업의 침입수/유입수 산정 및 활용방법 개선방안에 관한 연구)

  • Kim, Jong-Oh;Jeong, Dong-Gi;An, Dae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • In this study, current sewer infiltration/Inflow(I/I) computation and application method was examined about improvement and adequacy relating to the main issues raised by the field for practitioners. The results of review about infiltration calculation method were considered to be in need of improvement at 'standards of minimum sewage calculation'. Furthermore, the results of review about I/I application method were considered to be in need of improvement at 'standards of seasonal infiltration application' and 'the relative decrease in the Annual evaluation standards'. In addition, annual I/I analysis at JC County for the four years(2009~2012) in respect of operation flow and rainfall data was conducted. The result of annual infiltration analysis, compared average daily sewage generated average infiltration rate was found in 21.95 %, infiltration by unit was found in $0.31m^3/day/cm/km$ and $0.12m^3/day/day$, respectively. The result of annual inflow analysis, average rainfall - Inflow equations was found $y=5.499{\times}$($R^2$ 0.793), and the average Inflow quantity by sewer extension was predicted to $0.66m^3/mm-km$.

A Study on Runoff Characteristics of Combined Sewer Overflow(CSO) in Urban Area Using GIS & SWMM

  • Kim, Jae-Hoon;Paik, Do-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.467-474
    • /
    • 2005
  • The runoff characteristics of combined sewer overflow(CSO) in the urban area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model) and GIS. From August to November 2004, investigations on two rainfall events were performed and flowrate, pH, BOD, COD, SS, T-N and T-P were measured. these data were used for model calibration. Using GIS technique, watershed characteristics of study area were calculated. that is, divide into sub_basin, total width, slope, make soil map etc. On the basis of the measured data and the simulation results by SWMM, it could be known that the $80-90\%$ of pollution load are discharged in early-stage storm runoff. SMC(site mean Concentration) for combined sewer system area were BOD 28.1, COD 31.5, SS 186 ppm etc. this is shown that during the rain fall, high concentration of waste was loaded to receiving water. Unit loads of combined sewer system area were BOD 306, COD 410, SS 789, T-N 79, T-P 6.8 kg/ha/yr.

Effect of the Simplification and Composition in Sewer Networks (우수관망의 단순화와 관로배치의 영향분석)

  • 전병호;이종태;윤재영
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.139-146
    • /
    • 1994
  • Simplified sewer networks have been used to simulate runoff hydrographs for urban watersheds since configurations of sewer networks in urban area are commonly so complex that it is too cumbersome to simulate them as what they are. If they were to be simulated without any simplification, it is not likely that satisfactory results are obtained due to accumulation of numerous little errors. Even for the well-known models widely used in everyday practicesit is not appropriate to simulate everything in the watershed as what they are. In resolving these problems, it is common practice to simplify network configurations so as to be fitted to the models for runoff hydrograph simulation. In case of netwrok simplication, hydraulic and hydrologic characteristics of the watersheds should be carefully taken into consideration to derive meaningful results. On the bases of these considerations, this study analyzes simulation outputs using simplified networks and compares them, as well as inestigates the methods to make hydraulically sound simplification of sewer networks.

  • PDF

Runoff and Unsteady Pipe Flow Computation (유출과 부정류 관수로 흐름 계산에 관한 연구)

  • Jeon, Byeong-Ho;Lee, Jae-Cheol;Gwon, Yeong-Ha
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.251-263
    • /
    • 1990
  • For surcharge flow in a sewer, the slot technique simulates surcharge flow as open - channel flow using a hypothetical narrow open piezometric slot at the sewer crown. The flow in a sewer is described mathematically using the unsteady open - channel Saint-Venant equations. In this study, the computer simulation model(USS-slot) using slot techniques is develeped to simulate the inlet hydrographs to manholes and the flow under pressure as well as free - surface flow in tree - type sewer networks of circular conduits. The inlet hydrographs are simulated by using the rational method or the ILSD progrm. The Saint-Venant equations for unsteady open - channel flow in seweres are solved by using a four - point implicit difference scheme. The flow equations of the sewers and the junction flow equations are solved simulaneously using a sparse matrix solution technique.

  • PDF

Characterization of Combined Sewer Overflows from a Small Urban Watershed and Determination of Optimum Detention Volume (소규모 도시유역 합류식 하수관거 월류수 특성화 및 최적 저류지 용량 결정)

  • Jo, Deokjun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.314-320
    • /
    • 2006
  • Diffuse pollution from an urban area contributes to the significant pollution loading to a receiving water body. In this paper, rainfall runoffs from an urban basin with combined sewer systems located in the city of Daejeon were monitored to measure the rainfall runoff discharge rates and pollutant concentrations. Strong first flush effects were observed for all monitored rainfall runoffs. The first flush effects were closely related to rainfall intensity, while suspended solids were closely related to pollutant constituents. The observed averaged Event Mean Concentrations (EMCs) of Combined Sewer Overflows (CSOs) were 536.1 mg SS/L, 467.7 mg CODcr/L, 142.7 mg BOD/L, 16.5 mg TN/L, and 13.5 mg TP/L. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on suspended solid concentration. In this study, retainment of the first flush equivalent to 5mm of precipitation could reduce diffuse pollution loading induced by CSOs to a receiving water body by up to 80% of suspended solid loading.

Methods for an application of real-time network control on distributed storage facilities (분산형 저류시설의 실시간 네트워크 제어기술 적용시 고려 사항)

  • Beak, Hyunwook;Ryu, Jaena;Oh, Jeill;Kim, Tae-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.711-721
    • /
    • 2013
  • Optimal operation of a combined sewer network with distributed storage facilities aims to use the whole retention capacity of all reservoirs efficiently before overflows take place somewhere in the considered network system. An efficient real-time network control (RTNC) strategy has been emerging as an attractive approach for reducing substantially the overflows from a sewer network compared to the conventional fixed or manually adjusted gate setting method, but the related concrete framework for RTC development has not been throughly introduced so far. The main goal of this study is to give a detailed description of the RTNC systems via reviewing several guidelines published abroad, and finally to suggest methods for the proper application of RTNC on distributed storage facilities. Especially, this study is focused on emphasizing the importance of hierarchical structure of RTNC system that consists of three control layers (management, global control and local control). Further, with regard to the global control layer which is responsible for the central overall network control, the wide-ranging details of two components (adaption and optimization layers) are also presented. This study can provide the valuable basis for the RTNC implementation in the particular sewer network with distributed multiple storage facilities.

Statistical Methods for the Use of Infiltration and Inflow as Performance Index in Sewer Rehabilitation Works (하수관거정비사업에서 침입수.유입수 성과지표 활용을 위한 통계적 방법론에 관한 연구)

  • Kim, Hyung-Joon;Park, Kyoo-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.617-628
    • /
    • 2010
  • The operation performance of sewer rehabilitation projects conducted with Build-Transfer- Lease contract in Korea will be evaluated using the index of infiltration and inflow (I/I). Though I/I obtained at the fourth year should be initially evaluated based on the I/I values observed for the previous three years after the completion of sewer construction, the concrete methodology have not been proposed to rely on the so called 'performance evaluation committee'. This study suggests two statistical methodology to evaluate the I/I performance; the confidence interval method and the hypothesis-testing method. Assumed ten I/I values in each year for 20 years are used in this study. Two cases are analyzed and compared; case I to use as control data all I/I values for all years obtained before the evaluation year and case II to use I/I values for only 3 years before the evaluation year. As a result, case II tends to have relatively higher scores than case I, reflecting the low mean I/I values at the initial years.

The runoff characteristics of non-point source to urban stream during rainfall (강우 시 도시 하천으로의 비점오염원 유출특성)

  • Park, Woon-Ji;Kim, Dong-Oog;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.83-89
    • /
    • 2007
  • We studied runoff characteristics of combined sewer overflows in a city while it was raining. The event mean concentration (EMC) of biochemical oxygen demand (BOD), chemical oxygen demand ($COD_{Cr}$), suspended solids (SS), total nitrogen (TN), and total phosphorus (TP) in one of the combined sewer sites in Chuncheon was 63.5-211.6 mg/L, 114.9-523.8 mg/L, 70.3-436.4 mg/L, 6.4-33.0 mg/L, and 1.09-6.81 mg/L, respectively. In another combined sewer, the EMC of BOD, COD, SS, TN, and TP was 42.1-131.4 mg/L, 107.7-256.5 mg/L, 33.7-221.1 mg/L, 7.9-26.4 mg/L, and 1.16-3.91 mg/L, respectively. The ratio of the cumulative pollutant mass and the cumulative discharged volume determined using all parameters (BOD, $COD_{Cr}$, SS, TN, and TP) was over 1.0, which shows the first flush effect. Relationships between flow and loadings of BOD, $COD_{Cr}$, SS, TN, and TP were 0.90, 0.89, 0.88, 0.89, 0.92, respectively. Although the size of two areas was almost same, pollutant concentration and loading were different because of the amount of rainfall, rainfall intensity and basin area.

  • PDF

A Study on First Flush Storage Tank Design for Combined Sewer Overflows (CSOs) Control (합류식하수도 월류수 관리를 위한 초기우수 저류조 설계방안 연구)

  • Son, Bongho;Oa, Seongwook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.654-660
    • /
    • 2011
  • One of the best way to control Combined Sewer Overflow (CSO) is proposed to construct first flush storage tank. But there is little known parameters for optimum design of these facilities. This study was conducted to get optimum design parameters for a first flush storage tank construction. The optimization of the tank is generally based upon some measure of SS(Suspended Solid) mass holding efficiency. Water quality deterioration of receiving water body happened right after first time occurring rainfall in dry weather seasons. So, design rainfall intensity is used at 2 mm/hr for peak of monthly average intensities of dry seasons. The capacities for each evaluated catchment are designed from 14.4 min to 16.1 min HRT of CSOs flow at design rainfall intensity. Owing to all storage tanks are connected to interception sewer having a redundancy, the suggested volume could be cut down.

Synthetic storm sewer network for complex drainage system as used for urban flood simulation

  • Dasallas, Lea;An, Hyunuk;Lee, Seungsoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.142-142
    • /
    • 2021
  • An arbitrary representation of an urban drainage sewer system was devised using a geographic information system (GIS) tool in order to calculate the surface and subsurface flow interaction for simulating urban flood. The proposed methodology is a mean to supplement the unavailability of systematized drainage system using high-resolution digital elevation(DEM) data in under-developed countries. A modified DEM was also developed to represent the flood propagation through buildings and road system from digital surface models (DSM) and barely visible streams in digital terrain models (DTM). The manhole, sewer pipe and storm drain parameters are obtained through field validation and followed the guidelines from the Plumbing law of the Philippines. The flow discharge from surface to the devised sewer pipes through the storm drains are calculated. The resulting flood simulation using the modified DEM was validated using the observed flood inundation during a rainfall event. The proposed methodology for constructing a hypothetical drainage system allows parameter adjustments such as size, elevation, location, slope, etc. which permits the flood depth prediction for variable factors the Plumbing law. The research can therefore be employed to simulate urban flood forecasts that can be utilized from traffic advisories to early warning procedures during extreme rainfall events.

  • PDF