• 제목/요약/키워드: severe condition

검색결과 1,558건 처리시간 0.033초

오염된 윤활유가 마멸특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Contaminated Lubricants on Wear Characteristics)

  • 김해원;홍재학
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.113-123
    • /
    • 1990
  • To study deleterious effects of contaminants contained in lubricating systems, the effects of fine alumina particle concentration and size on the critical failure load, friction and wear characteristic were examined on boundary lubrication condition using the four ball machine. The following conclusions are deduced: The abrasive is found to cause a transition from mild wear to severe wear at less severe conditions than with clean oil. In mild wear region the friction and wear increase with particle size and concentration, but in severe wear region do not exhibit any definite trend. In relation to film thinckness there is a threshold of particle size beyond which the failure load no longer decreases with particle size.

  • PDF

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가 (An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU)

  • 조정길;김용욱;한재현;최정균;서경수;구정서
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.

Durability design and quality assurance of major concrete infrastructure

  • Gjorv, Odd E.
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.45-63
    • /
    • 2013
  • Upon completion of new concrete structures, the achieved construction quality always shows a high scatter and variability, and in severe environments, any weaknesses and deficiencies will soon be revealed whatever durability specifications and materials have been applied. To a certain extent, a probability approach to the durability design can take the high scatter and variability into account. However, numerical solutions alone are not sufficient to ensure the durability and service life of concrete structures in severe environments. In the present paper, the basis for a probability-based durability design is briefly outlined and discussed. As a result, some performance-based durability requirements are specified which are used for quality control and quality assurance during concrete construction. The final documentation of achieved construction quality and compliance with the specified durability are key to any rational approach to more controlled and increased durability. As part of the durability design, a service manual for future condition assessment and preventive maintenance of the structure is also produced. It is such a service manual which helps provide the ultimate basis for achieving a more controlled durability and service life of the given concrete structure in the given environment.

기후조건 변화에 따른 산불확산 변화 비교 (Comparison a Forest Fire Spread variation according to weather condition change)

  • 이시영;박흥석
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.490-494
    • /
    • 2008
  • We simulated a forest fire which was occurred in Yangyang area on 2005 and compared a results between two different weather conditions(real weather condition and mean weather condition since 1968) using FARSITE, which is a forest fire spread simulator for preventing and predicting fire in USDA. And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. In the result, severe weather condition on 2005 effected a forest fire behavior. The rate of spread under real weather condition was about 4 times faster than mean weather condition. Damaged area was about 10 time than mean weather condition. Therefore, Climate change will make a more sever fire season. As we will encounter to need for accurate prediction in near future, it will be necessary to predict a forest fire linked with future wether and fuel condition.

  • PDF

사이질방광염에서 요부 교감신경차단술의 효과 -증례 보고- (The Effect of Lumbar Sympathetic Block in Interstitial Cystitis -A case report-)

  • 정재윤;정지원;김용익
    • The Korean Journal of Pain
    • /
    • 제18권2호
    • /
    • pp.208-209
    • /
    • 2005
  • Interstitial cystitis is an extremely painful and distressing condition, characterized by severe suprapubic pain, which increases with bladder filling and is relieved by voiding. The daily frequency of micturition may approach 100 times, but no incontinence is observed. The symptoms persist throughout the night, which consequently affects sleep. The etiology of this condition is still unknown, but includes infection, autoimmune response, allergic reaction, neurogenic inflammation, epithelial dysfunction and inherited susceptibility. Herein, a case of interstitial cystitis, with severe symptoms, which was successfully treated with lumbar sympathetic block, is reported.

반복되는 고온 세탁 및 멸균 환경에 대한 Reusable 수술가운 원단의 퇴색 저항성 개선 연구 (Improving the Fading of Reusable Surgical Gown by Repeated Severe Laundering and Sterilization Condition)

  • 김지연;민문홍;염정현
    • 한국염색가공학회지
    • /
    • 제25권3호
    • /
    • pp.215-222
    • /
    • 2013
  • The purpose of this study is to minimize fading fabrics of surgical gown by repeated severe laundering and sterilization condition. The study showed that the best conditions were reduction cleaning using sulphinic acid derivatives or glucose organic chemicals at $98^{\circ}C$ alkaline solutions. In these conditions, color difference values(dE) were below 1.0 that means unrecognizable color change by repeated laundering and sterilization. If it treated with only laundering, reduction cleaning conditions may adjust over $80^{\circ}C$ alkaline solution. In conclusion, it is needed to select the high-washing fastness dye and reduction cleaning using sulphinic acid derivatives or glucose organic chemicals at $98^{\circ}C$ alkaline solutions for removal unfixed dyes.

외부조건의 변화에 따른 섬유보강콘크리트의 내구성능 정가에 관한 연구 (A Study on the Evaluation of Durability of Fiber Reinforced Concrete According to the Change of External Conditions)

  • 김남욱
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.97-104
    • /
    • 2008
  • This study was intended to evaluate the permeable performance through a change of reinforcing materials, curing condition, durability evaluation and permeability test, and to select the reinforcing material which could reduce the durability and water tightness from it, as the study for considering how the change of the outside's environment factors that the concrete structure actually contacted with impacted the concrete's durability especially the permeability by referring to such the background of the study. Accordingly, it was judged that evaluating the permeability by considering the severe environment condition where the concrete structure was placed in was more reasonable than measuring the existing permeability coefficient conducted in the sound state for the permeability evaluation of actually-used concrete structure. In this study, it also could be known that the specimen of hybrid fiber reinforced concrete which mixed the long and short steel fiber was the most effective for water tightness enhancement in severe environmental conditions.

중대사고에서의 열적 연화를 고려한 원자로 하부구조의 유한요소 극한해석 (Finite Element Limit Analysis of a Nuclear Reactor Lower Head Considering Thermal Softening in Severe Accident)

  • 김기풍;허훈;박재홍;이종인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.782-787
    • /
    • 2001
  • This paper is concerned with the global rupture of a nuclear reactor pressure vessel(RPV) in a severe accident. During the severe reactor accident of molten core, the temperature and the pressure in the nuclear reactor rise to a certain level depending on the initial and subsequent condition of a severe accident. While the rise of the temperature cause the thermal softening of RPV material, the rise of the internal pressure could cause failure of the RPV lower head. The global rupture of an RPV is simulated by finite element limit analysis for the collapse pressure and mode and this analysis results have been compared with a variation of the internal pressure of RPV. The finite element limit method is a systematic tool to secure the safety criteria of a nuclear reactor and to evaluate the in-vessel corium retention.

  • PDF

복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화 (A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane)

  • 권오상;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권7호
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.