• Title/Summary/Keyword: settling concentration

Search Result 162, Processing Time 0.053 seconds

Effect of Cation and Ionic Strength on Dispersion and Coagulation of Hwangto and Clay Minerals (양이온의 종류와 농도에 따른 황토와 점토광물의 분산과 응집)

  • Park, Bo-Kyeong;Kim, Kyung-Min;Kim, Young-In;Yum, Seo-Yun;Lee, Jeong-Woo;Hyung, Seuug-Woo;Hwang, Jun-Ho;Kim, Yu-Mi;Kong, Mi-Hye;Kim, Cheong-Bin;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2009
  • The objective of this research was to find out the physical properties, such as dispersion and coagulation, of soil minerals depending on the types and concentrations of the cations in aqueous solution. Hwangto samples were obtained from 90 to 130 cm from surface at Jangdong-ri, Donggang-Myon, Naju, Chonnam Province. The clay fraction (< $2\;{\mu}m$) was separated by sedimentation method from the bulk soils. Both Hwangto and clay fractions, and the same samples after removal of amorphous and crystalline iron oxides were used in this experiment. The effect of 4 cations ($Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) and their concentrations on settling speed and basal spacing of the minerals were observed to examine the physical properties of the soil and clay minerals. Hwangto mainly consisted of quartz, and the clay fractions consisted of kaolinite, illite, and vermiculite. The bulk soils contained 16.3 mg/kg of amorphous iron oxides and 436 mg/kg of crystalline iron oxides. Clay fractions were dispersed better than bulk soils due to their smaller particle size than that of the bulk samples in the aqueous solution. The bulk and clay samples were dispersed better when iron oxides were removed because of coating of minerals by the iron oxides. Clay minerals were settled faster as the charge and the concentration of cations added increased. The d-spacing of kaolinite and illite did not change when 4 types of cations were added. The d-spacing of vermiculite showed $14.04\;{\AA}$ when divalent cations were added while that of vermiculite showed $13.9\;{\AA}$ when monovalent cations were added. It may be attributed to the hydration radii of cations. This study indicated that both coating of iron oxides on minerals and types and concentrations of cations affect dispersion of minerals in solution and d-spacing of expanding clay minerals such as vermiculite.

Evaluation of Cleaning ability and Environmental Evaluation of Commercial Aqueous/Semi-aqueous Cleaning Agents (시판 수계/준수계 세정제의 세정성 및 환경성 평가 연구)

  • Cha, A.J.;Park, J.N.;Kim, H.S.;Bae, J.H.
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.73-87
    • /
    • 2004
  • In most of industrial fields, cleaning is employed for removing soils on their products or parts. Halogenated cleaning agents such as CFC-113, 1,1,1-TCE(1,1,1-trichloroethane), MC(methylene chloride) and TCE (trichloroethylene) have been used as cleaning ones in most of companies in the world since their excellent performance of cleaning ability and good material compatibility. However, CFC-113 and 1,1,1-TCE which are ozone destruction substances are not used any more in the advanced countries because of the which are ozone destruction substances are not used any more in the advanced countries because of the Montreal protocol. MC and TCE are now used restrictively at small part of industrial fields in most of countries since they are known to be hazardous or carcinogenic materials. Thus, it is indispensible that the alternative cleaning agents which are environmental-friendly and safe, and show good cleaning ability should be developed or utilized for replacement of the halogenated cleaning agents. Aqueous/semi-aqueous cleaning agents are evaluated to be promising alternative ones among various alternatives in environmental and economical view point. In this study, commercially available 12 aqueous and 6 semi-aqueous cleaning agents were selected and their physical properties, cleaning abilities, rinsing abilities and recycling of contaminated rinse water were measured and analyzed. Aqueous cleaning agents with higher wetting index showed better cleaning ability compared with those with lower wetting index. However wetting index did not have any correlation with cleaning ability in semi-aqueous cleaning agents. It was observed that soil concentration in aqueous and semi-aqueous cleaning agents should be maintained below the certain concentrations which depend on types of clearing agents. More than 70% soils in contaminated rinse water by some of aqueous and semi-aqueous clearing agents could be separated by simple settling method. This means that some cleaning agents with high oil-water separation efficiency will be effiective for recycling oil-contaminated rinse water. It was found that contaminated rinse water with aqueous agents was purified easiy by ultrafiltration method with PAN membrane of 30 kDa.

  • PDF