• Title/Summary/Keyword: setting shrinkage

Search Result 152, Processing Time 0.027 seconds

Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum (알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성)

  • Hong-Seop Kim;Kyoung-Su Shin;Do-Gyeum Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • In this study, the mechanical properties of PHC pile concrete using alpha-type hemihydrate gypsum were evaluated. As the replacement ratio of alpha-type hemihydrate gypsum increased, the setting time rapidly accelerated. In particular, when replacement ratio exceeded 20 %, the setting time was shortened due to rapid hydration reaction, making it impossible to secure working time. As the replacement ratio of alpha-type hemihydrate gypsum increased, the ettringite and gypsum peaks tended to increase, and it is believed that the shrinkage of concrete decreased due to the increase in the ettringite peak. At a As the replacement ratio of 5 to 15 % for alpha-type hemihydrate gypsum, the compressive strength increased or was found to be equivalent to that of OPC. But at 20 % substitution, workability deteriorated due to rapid setting, so use of the 5 to 15 % range is considered appropriate.

Effect of the Curing Temperature on Autogenous Shrinkage of the High Strength Mortar incorporating Mineral Admixtures (양생온도가 혼화재 치환 고강도 모르터의 응결 및 자기수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, tests were carried out to monitor the effect of the curing temperature on autogenous shrinkage of the high strength cement mortar incorporating silica fume, blast furnace slag and fly ash ranged from 10%~30% by mass of cement. The curing temperatures were varied from $5^{\circ}C$ to $35^{\circ}C$, respectively. According to results, the setting time exhibited to delay with increase of admixture and drop of temperature. As for the effect of curing temperature on autogenous shrinkage, the increase of SF and BS resulted in an increase of autogenous shrinkage, while the use of FA decrease. The higher the curing temperature is, the greater the autogenous shrinkage is. This is due to the accelerated hydration rate of cement. It is found that the maturity does not consider the effect of curing temperature on autogenous shrinkage.

  • PDF

Field Application of the Concrete with the Combination of Drying Shrinkage-Reducing Superplasticizer and Double Layer Bubble Sheet (건조수축 저감형 유동화제 및 2 중 버블시트를 사용한 콘크리트의 현장적용)

  • Han, Cheon-Goo;Oh, Chi-Hyun;Shin, Jae-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.107-113
    • /
    • 2007
  • This study investigates the filed application in Daebul Free Trade Zone applying both a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double layer bubble sheet. Test results showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall. In addition, a structure applying the flowing concrete method partially presented the micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing concrete method was 28%, compared with that of conventional one. For the compressive strength of specimens, standard curing specimens indicated $3{\sim}33%$ higher value than that of specimens cured besides the field construction. The specimens containing SRS improved the strength of $2{\sim}6MPa$, which is $10{\sim}22%$ higher than that of conventional concrete.

Field Application of Concrete Using Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제를 사용한 콘크리트의 현장적용)

  • Shin, Jae-Kyung;Oh, Chi-Hyun;Choi, Jin-Man;Lee, Seong-Yeun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.13-16
    • /
    • 2006
  • This study investigates filed application in Daebul Free Trade Zone of a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double bubble sheets. Test showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall, and a structure applying only the flowing method partially presented micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing method was 28%, compared with 100% of conventional one. Standard curing specimens had about $3{\sim}6%$ higher compressive strength than that of specimens cured at adjacent field construction. In addition, using SRS improved about $5{\sim}7MPa$, than that of conventional concrete at 91 days elapse.

  • PDF

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.

The Analysis of Early Age Properties of Hydration Heat and Autogenous Shrinkage according to Specimen Size and Retardation of Hydration (시험체 크기 및 수화지연 효과에 따른 초기재령 수화발열 및 자기수축 특성 분석)

  • Kim, Gyu-Yong;Koo, Kyung-Mo;Lee, Hyoung-Jun;Lee, Eui-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.481-488
    • /
    • 2009
  • It has been reported that the magnitude and the development rate of autogenous shrinkage of cement paste, mortar and concrete were affected by history and magnitude of inner temperature at an early age. But it was not enough to explain the relation between hydration heat and autogenous shrinkage at an early age, because there was no certain analysis on histories of hydration heat and autogenous shrinkage in previous studies. In our prior study, to understand the relationship between hydration heat and autogenous shrinkage of concrete at an early age, the analysis method for histories of hydration heat and autogenous shrinkage was suggested. Based on this method, early age properties of hydration heat and autogenous shrinkage of high strength concrete with different sizes and hydration retardation were investigated in this study. As a result of the study, properties of hydration temperature and autogenous shrinkage were different according to specimen size and hydration retardation. However, there was a close relationship between hydration temperature and autogenous shrinkage at an early age, especially between HHV and ASV as linear slopes of the sections where hydration temperature and autogenous shrinkage increase rapidly; the higher HHV, the higher ASV and the greater ultimate autogenous shrinkage. And it was found that, among the setting time, bend point and temperature increasing point, they were close relationship each other on cement hydration process.

Properties of Autogenous Shrinkage according to Hydration Heat Velocity of High Strength Concrete Considering Mass Member (매스부재를 고려한 고강도콘크리트의 수화발열상승속도 조절에 따른 자기수축 특성)

  • Koo, Kyung-Mo;Kim, Gyu-Yong;Hong, Sung-Hyun;Nam, Jeong-Soo;Shin, Kyoung-Su;Khil, Bae-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • In this study, to reduce the hydration heat velocity (HHV) of high-strength mass concrete at early ages, phase change materials (PCM) that could absorb hydration heat were applied, and the changes in autogenous shrinkage were investigated, as well as the relationship between the hydration temperature and autogenous shrinkage. The acceleration of the cement hydration process by the PCM leads to an early setting and a higher development of the compressive strength and elastic modulus of concrete at very early ages. The function of PCM could be worked below the original melting point due to the eutectic effect, while the hydration temperature and HHV of high-strength mass concrete can be decreased through the use of the PCM. A close relationship was found between the hydration temperature and autogenous shrinkage: the higher the HHV, the greater the ultimate autogenous shrinkage.

Hardened properties of the cement based Basalt powder sludge mortar for surface preparation (시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성)

  • Jang, Myung-Houn;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • This study aimed to evaluate of the hardened properties (mortar consistency, setting time, absorption properties, drying shrinkage, and bond strength) of the basalt powder sludge mortar recycling a basalt powder sludge occurred during the manufacture process of basalt stone as a replacing material for the sea-sand used to cement filling compound for surface preparation. The hardened mortar made of the basalt powder sludge showed an enhanced performance or similar with the properties of normal mortar used to cement filling compound for surface preparation. But, the drying shrinkage was increased more than a normal cement mortar in the hardened mortar made of the basalt powder sludge since curing 8 - 9days. And the bond strength is low in the hardened mortar used the basalt powder sludge. On the whole, properties of the hardened mortar used the basalt powder sludge correspond to the required minimum quality criterion in the KS F 4716 'cement filling compound for surface preparation'.

Influence of Limestone Powder on the Hydration of Cement Contained much Chloride (석회석 미분말이 염소고함유시멘트의 수화반응에 미치는 영향)

  • Jeong, Chan-Il;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.537-543
    • /
    • 2006
  • Length change, hydration heat, setting time and compressive strength of OPC were measured by adding KCl and replacing limestone powder so as to examine the influence of limestone powder on hydration of the OPC contained much chloride. In general, the chloride modified cement was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the sudden hydration in its initial stage. As a result of the experiment, it has been demonstrated that heat of hydration, became low as one replaced limestone powder to the chloride modified cement, and the fluidity and shrinkage rate of mortar decreased without change in setting time; furthermore, the compressive strength at 28 days was improved.