• Title/Summary/Keyword: setaflash tester

Search Result 27, Processing Time 0.024 seconds

The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS (MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.

The Measurement of the Combustible Properties of tert-Butylbenzene for the Improvement of MSDS (Material Safety Data Sheet) (MSDS 개선을 위한 tert-Butylbenzene의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • Because of the vertical combustion characteristics of combustible substances, accurate substance safety information for their safe use, handling and transportation is essential. The flash point, fire point, explosion limits and autoignition temperature (AIT) are important safety parameters which need special attention in chemical plants and laboratories that handle dangerous materials. In this study, tert-butylbenzene which is widely used as an intermediate material in the chemical industry was selected. For the reliability of the flammable properties of tert-butylbenzene, this study was investigated the explosion limits of tert-butylbenzene in the reference data. The flash points, fire points and AITs by the ignition delay time for tert-butylbenzene were experimented. The lower flash points of tert-butylbenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $39^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of tert-butylbenzene by using the Tag and Cleveland open cup testers are measured $51^{\circ}C$ and $54^{\circ}C$. And the fire points of tert-butylbenzene by the Tag and Cleveland open cup testers were $54^{\circ}C$ and $58^{\circ}C$ respectively. The AIT of tert-butylbenzene measured by the ASTM 659E tester was measured as $450^{\circ}C$. The lower explosion limit of $39^{\circ}C$ which measured by the Setaflash flash point tester was calculated to be 0.68 vol%.

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne (노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

A Study on the Reliability of the Combustible Properties for Acrylic Acid (아크릴릭산의 연소특성치의 신뢰성 연구)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2015
  • For the reliability of the combustible properties of arylic acid, this study was investigated the explosion limits of acrylic acid in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of acrylic acid by using Setaflash and Pensky-Martens closed-cup testers were experimented in $48^{\circ}C$ and $51^{\circ}C$, respectively. The lower flash points of arylic acid by using Tag and Cleveland open cup testers were experimented in $56^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acrylic acid. The AIT of acrylic acid was experimented as $417^{\circ}C$. The lower explosion limit(LEL) and the upper explosion limit(UEL) by the measured the lower flash point and the upper flash point of acrylic acid were calculated as 2.2 Vol% and 7.9 Vol%, respectively.

Measurement and Prediction of the Combustible Properties of Cumene (큐멘(Cumene)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.465-469
    • /
    • 2016
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of cumene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of cumene was experimented. And, the lower explosion limit of cumene was calculated by using the lower flash point obtained in the experiment. The flash points of cumene by using the Setaflash and Pensky-Martens closed-cup testers measured $31^{\circ}C$ and $33^{\circ}C$, respectively. The flash points of cumene by using the Tag and Cleveland open cup testers are measured $43^{\circ}C$ and $45^{\circ}C$. The AIT of cumene by ASTM 659E tester was measured as $419^{\circ}C$. The lower explosion limit by the measured flash point $31^{\circ}C$ was calculated as 0.87 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

The Measurement and Investigation of Fire and Explosion Characteristics of Isopropyl Alcohol (이소프로필 알코올의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • For the safe handling of isopropyl alcohol, the explosion limits were investigated. The lower flash points, upper flash points, fire point, and AITs(autoignition temperatures) by ignition time delay for isopropyl alcohol were experimented. By using literature data, the lower and upper explosion limits of isopropyl alcohol were recommended as 2.0 and 12.0 vol%, respectively. The lower flash points of isopropyl alcohol were experimented $12{\sim}14^{\circ}C$ by using closed-cup tester and $18{\sim}19^{\circ}C$ by using open cup tester. And the upper flash points of isopropyl alcohol was experimented $38^{\circ}C$ by using Setaflash closed-cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus was $463^{\circ}C$.

The Measurement and Prediction of Combustible Properties of Dimethylacetamide (DMAc) (디메틸아세트아미드(DMAc)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.553-556
    • /
    • 2015
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of dimethylacetamide (DMAc) being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of DMAc was experimented. And, the lower explosion limit of DMAc was calculated by using the lower flash point obtained in the experiment. The flash points of DMAc by using the Setaflash and Pensky-Martens closed-cup testers measured $61^{\circ}C$ and $65^{\circ}C$, respectively. The flash points of DMAc by using the Tag and Cleveland automatic open cup testers are measured $68^{\circ}C$ and $71^{\circ}C$. The AIT of DMAc by ASTM 659E tester was measured as $347^{\circ}C$. The lower explosion limit by the measured flash point $61^{\circ}C$ was calculated as 1.52 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Measurement and Prediction of the Combustible Properties of Propionic Anhydride (Propionic Anhydride의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • For the safe handling of Propionic Anhydride being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of Propionic Anhydride was experimented. And, the lower explosion limit of propionic anhydride was calculated by using the lower flash point obtained in the experiment. The flash points of propionic anhydride by using the Setaflash and Pensky-Martens closed-cup testers measured $60^{\circ}C$ and $61^{\circ}C$, respectively. The flash points of propionic anhydride by using the Tag and Cleveland open cup testers are measured $67^{\circ}C$ and $73^{\circ}C$. The AIT of propionic anhydride by ASTM 659E tester was measured as $280^{\circ}C$. The lower explosion limit by the measured flash point $60^{\circ}C$ was calculated as 1.37 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Prediction and Measurement of Combustible Properties for Bromobenzene (브로모벤젠의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.21-25
    • /
    • 2015
  • The usage of the correct combustion characteristics of the treated substance for the safety of the process is critical. For the safe handling of bromobenzene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of bromobenzene was experimented. And, the lower explosion limit of bromobenzene was calculated by using the lower flash point obtained in the experiment. The flash points of bromobenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $50^{\circ}C$, respectively. The flash points of bromobenzene by using the Tag and Cleveland automatic open cup testers are measured $56^{\circ}C$ and $64^{\circ}C$. The AIT of bromobenzene by ASTM 659E tester was measured as $573^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 1.63 Vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.