• Title/Summary/Keyword: set-partitioning model

Search Result 33, Processing Time 0.025 seconds

A Multiple Branching Algorithm of Contour Triangulation by Cascading Double Branching Method (이중분기 확장을 통한 등치선 삼각화의 다중분기 알고리즘)

  • Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.123-134
    • /
    • 2000
  • This paper addresses a new triangulation method for constructing surface model from a set of wire-frame contours. The most important problem of contour triangulation is the branching problem, and we provide a new solution for the double branching problem, which occurs frequently in real data. The multiple branching problem is treated as a set of double branchings and an algorithm based on contour merging is developed. Our double branching algorithm is based on partitioning of root contour by Toussiant's polygon triangulation algorithml[14]. Our double branching algorithm produces quite natural surface model even if the branch contours are very complicate in shape. We treat the multiple branching problem as a problem of coarse section sampling in z-direction, and provide a new multiple branching algorithm which iteratively merge a pair of branch contours using imaginary interpolating contours. Our method is a natural and systematic solution for the general branching problem of contour triangulation. The result shows that our method works well even though there are many complicated branches in the object.

  • PDF

Comparison of clustering methods of microarray gene expression data (마이크로어레이 유전자 발현 자료에 대한 군집 방법 비교)

  • Lim, Jin-Soo;Lim, Dong-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.39-51
    • /
    • 2012
  • Cluster analysis has proven to be a useful tool for investigating the association structure among genes and samples in a microarray data set. We applied several cluster validation measures to evaluate the performance of clustering algorithms for analyzing microarray gene expression data, including hierarchical clustering, K-means, PAM, SOM and model-based clustering. The available validation measures fall into the three general categories of internal, stability and biological. The performance of clustering algorithms is evaluated using simulated and SRBCT microarray data. Our results from simulated data show that nearly every methods have good results with same result as the number of classes in the original data. For the SRBCT data the best choice for the number of clusters is less clear than the simulated data. It appeared that PAM, SOM, model-based method showed similar results to simulated data under Silhouette with of internal measure as well as PAM and model-based method under biological measure, while model-based clustering has the best value of stability measure.

Bayesian analysis of finite mixture model with cluster-specific random effects (군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석)

  • Lee, Hyejin;Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Clustering algorithms attempt to find a partition of a finite set of objects in to a potentially predetermined number of nonempty subsets. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet prior distribution calculates posterior probabilities when the number of clusters was known. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. Examples are given to show how these models perform on real data.

A New Method to Retrieve Sensible Heat and Latent Heat Fluxes from the Remote Sensing Data

  • Liou Yuei-An;Chen Yi-Ying;Chien Tzu-Chieh;Chang Tzu-Yin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.415-417
    • /
    • 2005
  • In order to retrieve the latent and sensible heat fluxes, high-resolution airborne imageries with visible, near infrared, and thermal infrared bands and ground-base meteorology measurements are utilized in this paper. The retrieval scheme is based on the balance of surface energy budget and momentum equations. There are three basic surface parameters including surface albedo $(\alpha)$, normalized difference vegetation index (NOVI) and surface kinetic temperature (TO). Lowtran 7 code is used to correct the atmosphere effect. The imageries were taken on 28 April and 5 May 2003. From the scattering plot of data set, we observed the extreme dry and wet pixels to derive the fitting of dry and wet controlled lines, respectively. Then the sensible heat and latent heat fluxes are derived from through a partitioning factor A. The retrieved latent and sensible heat fluxes are compared with in situ measurements, including eddy correlation and porometer measurements. It is shown that the retrieved fluxes from our scheme match with the measurements better than those derived from the S-SEBI model.

  • PDF

An Attribute Replicating Vertical Partition Method by Genetic Algorithm in the Physical Design of Relational Database (관계형 데이터베이스의 물리적 설계에서 유전해법을 이용한 속성 중복 수직분할 방법)

  • 유종찬;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.46
    • /
    • pp.33-49
    • /
    • 1998
  • In order to improve the performance of relational databases, one has to reduce the number of disk accesses necessary to transfer data from disk to main memory. The paper proposes to reduce the number of disk I/O accesses by vertically partitioning relation into fragments and allowing attribute replication to fragments if necessary. When zero-one integer programming model is solved by the branch-and-bound method, it requires much computing time to solve a large sized problem. Therefore, heuristic solutions using genetic algorithm(GA) are presented. GA in this paper adapts a few ideas which are different from traditional genetic algorithms, for examples, a rank-based sharing fitness function, elitism and so on. In order to improve performance of GA, a set of optimal parameter levels is determined by the experiment and makes use of it. As relations are vertically partitioned allowing attribute replications and saved in disk, an attribute replicating vertical partition method by GA can attain less access cost than non-attribute-replication one and require less computing time than the branch-and-bound method in large-sized problems. Also, it can acquire a good solution similar to the optimum solution in small-sized problem.

  • PDF

Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS

  • X., John Britto;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.671-681
    • /
    • 2019
  • This paper examines the applicability of artificial neural network (ANN) and multivariate adaptive regression splines (MARS) to predict the compressive strength of bacteria incorporated geopolymer concrete (GPC). The mix is composed of new bacterial strain, manufactured sand, ground granulated blast furnace slag, silica fume, metakaolin and fly ash. The concentration of sodium hydroxide (NaOH) is maintained at 8 Molar, sodium silicate ($Na_2SiO_3$) to NaOH weight ratio is 2.33 and the alkaline liquid to binder ratio of 0.35 and ambient curing temperature ($28^{\circ}C$) is maintained for all the mixtures. In ANN, back-propagation training technique was employed for updating the weights of each layer based on the error in the network output. Levenberg-Marquardt algorithm was used for feed-forward back-propagation. MARS model was developed by establishing a relationship between a set of predictors and dependent variables. MARS is based on a divide and conquers strategy partitioning the training data sets into separate regions; each gets its own regression line. Six models based on ANN and MARS were developed to predict the compressive strength of bacteria incorporated GPC for 1, 3, 7, 28, 56 and 90 days. About 70% of the total 84 data sets obtained from experiments were used for development of the models and remaining 30% data was utilized for testing. From the study, it is observed that the predicted values from the models are found to be in good agreement with the corresponding experimental values and the developed models are robust and reliable.

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.

Precise-Optimal Frame Length Based Collision Reduction Schemes for Frame Slotted Aloha RFID Systems

  • Dhakal, Sunil;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.165-182
    • /
    • 2014
  • An RFID systems employ efficient Anti-Collision Algorithms (ACAs) to enhance the performance in various applications. The EPC-Global G2 RFID system utilizes Frame Slotted Aloha (FSA) as its ACA. One of the common approaches used to maximize the system performance (tag identification efficiency) of FSA-based RFID systems involves finding the optimal value of the frame length relative to the contending population size of the RFID tags. Several analytical models for finding the optimal frame length have been developed; however, they are not perfectly optimized because they lack precise characterization for the timing details of the underlying ACA. In this paper, we investigate this promising direction by precisely characterizing the timing details of the EPC-Global G2 protocol and use it to derive a precise-optimal frame length model. The main objective of the model is to determine the optimal frame length value for the estimated number of tags that maximizes the performance of an RFID system. However, because precise estimation of the contending tags is difficult, we utilize a parametric-heuristic approach to maximize the system performance and propose two simple schemes based on the obtained optimal frame length-namely, Improved Dynamic-Frame Slotted Aloha (ID-FSA) and Exponential Random Partitioning-Frame Slotted Aloha (ERP-FSA). The ID-FSA scheme is based on the tag set estimation and frame size update mechanisms, whereas the ERP-FSA scheme adjusts the contending tag population in such a way that the applied frame size becomes optimal. The results of simulations conducted indicate that the ID-FSA scheme performs better than several well-known schemes in various conditions, while the ERP-FSA scheme performs well when the frame size is small.

Development of Models for Regional Cardiac Surgery Centers

  • Park, Choon Seon;Park, Nam Hee;Sim, Sung Bo;Yun, Sang Cheol;Ahn, Hye Mi;Kim, Myunghwa;Choi, Ji Suk;Kim, Myo Jeong;Kim, Hyunsu;Chee, Hyun Keun;Oh, Sanggi;Kang, Shinkwang;Lee, Sok-Goo;Shin, Jun Ho;Kim, Keonyeop;Lee, Kun Sei
    • Journal of Chest Surgery
    • /
    • v.49 no.sup1
    • /
    • pp.28-36
    • /
    • 2016
  • Background: This study aimed to develop the models for regional cardiac surgery centers, which take regional characteristics into consideration, as a policy measure that could alleviate the concentration of cardiac surgery in the metropolitan area and enhance the accessibility for patients who reside in the regions. Methods: To develop the models and set standards for the necessary personnel and facilities for the initial management plan, we held workshops, debates, and conference meetings with various experts. Results: After partitioning the plan into two parts (the operational autonomy and the functional comprehensiveness), three models were developed: the 'independent regional cardiac surgery center' model, the 'satellite cardiac surgery center within hospitals' model, and the 'extended cardiac surgery department within hospitals' model. Proposals on personnel and facility management for each of the models were also presented. A regional cardiac surgery center model that could be applied to each treatment area was proposed, which was developed based on the anticipated demand for cardiac surgery. The independent model or the satellite model was proposed for Chungcheong, Jeolla, North Gyeongsang, and South Gyeongsang area, where more than 500 cardiac surgeries are performed annually. The extended model was proposed as most effective for the Gangwon and Jeju area, where more than 200 cardiac surgeries are performed annually. Conclusion: The operation of regional cardiac surgery centers with high caliber professionals and quality resources such as optimal equipment and facility size, should enhance regional healthcare accessibility and the quality of cardiac surgery in South Korea.

A dominant hyperrectangle generation technique of classification using IG partitioning (정보이득 분할을 이용한 분류기법의 지배적 초월평면 생성기법)

  • Lee, Hyeong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.149-156
    • /
    • 2014
  • NGE(Nested Generalized Exemplar Method) can increase the performance of the noisy data at the same time, can reduce the size of the model. It is the optimal distance-based classification method using a matching rule. NGE cross or overlap hyperrectangles generated in the learning has been noted to inhibit the factors. In this paper, We propose the DHGen(Dominant Hyperrectangle Generation) algorithm which avoids the overlapping and the crossing between hyperrectangles, uses interval weights for mixed hyperrectangles to be splited based on the mutual information. The DHGen improves the classification performance and reduces the number of hyperrectangles by processing the training set in an incremental manner. The proposed DHGen has been successfully shown to exhibit comparable classification performance to k-NN and better result than EACH system which implements the NGE theory using benchmark data sets from UCI Machine Learning Repository.