• Title/Summary/Keyword: servo system

Search Result 1,611, Processing Time 0.03 seconds

A Study on the Practice of Engineering Education in Graduation Standards Certification Process through the Design and Implementation of Drone for Ground Driving and Aerial Flight (지상주행과 공중비행이 가능한 Drone 설계 및 구현을 통한 졸업기준 인증 과정에서 공학교육 실천에 관한 연구)

  • Jang, Woo-Jin;Yoo, Jeong-Min;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Through the design and production of works for the third semester as a major unit, It is proposed the process of satisfying the graduation standards with the design and production process of the drone which can be applied to various mobile environments. Using the shape of Ring Propeller, it is made to be able to play both the role of generating lift as a propeller and the role of a wheel that touches the ground through the surface of the rim. In addition, the Servo Motor is used to convert the drive shaft of the motor to the correct angle according to the command. Then, based on the idea, the 3D printing is implemented to confirm the result of the configuration, and the circuit for driving the propulsion is designed and manufactured. As a result, the conversion of the desired propulsion system during air navigation and operation failed due to the weight increase of the propellant. It is confirmed that the size of the thrust and the tolerance limit of the ring propeller are the errors. Through these processes, it has been recognized to have experience of creative thinking and cooperation through engineering approach and comprehensive design, and confirmed to satisfy the graduation criteria by writing an engineering paper on the result.

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF

Dynamic Positioning Control System for Gas & Oil Exploration Platforms Using H$\infty$ Control (H$\infty$ 제어를 이용한 가스 및 석유 탐사용 플랫폼의 동위치 제어)

  • Yoo Hui Ryong;Rho Yong Woo;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Kim Sang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.62-69
    • /
    • 1999
  • This paper presents a design method of dynamic positioning control system(DPS) for floating Platform with rotatable and retractable thrusters using H$\infty$ servo control design method. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying H$\infty$ synthesis. The control law satisfying robust stability and nominal performance condition is determined through the mixed sensitivity approach. The control algorithm was evaluated on the basis of computer simulation for a proposed DPS design method and experiments was carried out with an image processing method for measurement of DPS position in a water tank The results of overall experiments show that proposed control method will be good to keep at a specified position. And they are compared with the experimental results by LQG synthesis and H$\infty$ optimal control design method.

  • PDF

Simple Robust Digital Position Control Algorithm of BLDD Motor using Neural Network with State Feedback (상태궤환과 신경망을 이용한 BLDD Motor의 간단한 강인 위치 제어 알고리즘)

  • 고종선;안태천
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A new control approach using neural network for the robust position control of a BRUSHLESS direct drive(BLDD) motor is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust BLDD motor system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system will be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained by error back-propagation at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. In addition, the robustness is also obtained without affecting overall system response.

  • PDF

Indirect Cutting Force Measurement by Using Servodrive Current Sensing and it's Application to Monitoring and Control of Machining Process (이송모터 전류 감지를 통한 절삭력의 간접측정과 절삭공정 감시 및 제어에의 응용)

  • Kim, Tae-Yong;Choi, Deok-Ki;Chu, Chong-Nam;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • This paper presents an indirect cutting force measuring system, which uses the current signals from the AC servo drive units of the horizontal machining center, with its applications to the adaptive regulation of the cutting forces in various milling processes and to the on-line monitoring of tool breakage. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that the indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The whole scheme has been embedded in the commercial machining center and a series of cutting experiments on the face cutting processes are performed. The adaptive controller reveals reliable cutting force regulating capability against the various cutting conditions. It is also shown that the tool breakage in milling can be detected within one spindle revolution by adaptively filtering the current signals. The effect of the cutter run-out has been considered for the reliable on-line detection of tool breakage.

  • PDF

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

Shape Design of the 3-Way Valve used in Marine Diesel Engines (LDCL JWCS) by CFD Analysis (유동해석을 통한 선박용 디젤엔진(LDCL JWCS)의 3-Way Valve 형상 설계)

  • Hwang, Gi Ung;Kwak, Hyo Seo;Kim, Jae Yeol;Eom, Tae Jin;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1077-1084
    • /
    • 2017
  • Camshaft engines designed for constant engine loads have been applied to existing marine diesel engines. However, due to environmental regulations, electro-hydraulic servo mechanisms, which have a loaddependent cylinder liner jacket water cooling system (LDCL-JWCS), have been recently developed to individually control the temperature of the cylinders depending on the engine load. In this system, the 3-way valve, which prevents low temperature corrosion by reducing the temperature difference between the upper and lower parts of the cylinder, has been employed, but the outlet mass flow of the existing valve is low. In this study, the design of the internal shape of the 3-way valve was performed by analyzing the effects of the design parameters of the valve shape on the performance (i.e., the outlet mass flow rate and temperature). The proposed model was verified by comparing its performance to that of existing marine diesel engine valves.

New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers (다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계)

  • Lee, Ki-Chang;Kim, Min-Tae;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Lee, Jin-Woo;Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.405-413
    • /
    • 2006
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it an other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.

  • PDF

A Design of Adaptive Backstepping Controller for Improving Position Accuracy of Linear Motor-based Container Transportation System with Dynamic Friction (선형전동기기반 컨테이너 이송시스템의 위치정확도 향상을 위한 적응 Backstepping 제어기 설계)

  • Seo, Jung-Hyun;Han, Geun-Jo;Lee, Kwon-Soon;Lee, Jin-Woo
    • Journal of Navigation and Port Research
    • /
    • v.31 no.1 s.117
    • /
    • pp.55-64
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstepping control method.