• Title/Summary/Keyword: servo press

Search Result 61, Processing Time 0.031 seconds

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

A Study on the Variation of Electric Contact Resistance Due to Change in Contact Force in a Tin-plated Connector (주석 도금한 커넥터의 접촉 하중의 변화에 의한 전기 접촉저항 변화에 관한 연구)

  • Yu, Hwan-Shin;Oh, Man-Jin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.381-386
    • /
    • 2014
  • In order to investigate the effect of contact load, which is one of the fretting corrosion factors affecting the electric connector, a coupled fretting corrosion specimens were prepared using a tin-plated brass coupon with a thickness of $3{\mu}m$. Electric resistance of the contact was measured during the fretting corrosion test period. There was increase in resistance with fretting cycles. The change in resistance can be classified by 3 stages. The first stage exhibited low and stable resistance. Second stage showed steady increment of the resistance and third stage showed very high and intermittent resistance. The relationship between the failure cycle (Nf) and contact force (P) can be drawn as; It is possible to draw the prediction equation for the failure cycle of the electric connector corresponding to the very high and intermittent resistance under various environment conditions through the fretting tests under various conditions such as load, displacement, temperature.

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.

Constitutive model for ratcheting behavior of Z2CND18.12N austenitic stainless steel under non-symmetric cyclic stress based on BP neural network

  • Wang, Xingang;Chen, Xiaohui;Yan, Mingming;Chang, Miaoxin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.517-525
    • /
    • 2018
  • The specimens made by Z2CND18.12N austenitic stainless steel were conducted on a 100 kN closed loop servo hydraulic tension-compression testing machine with a digital controller. Uniaxial tension and uniaxial ratcheting effect tests were carried out at $25^{\circ}C$. Moreover, Uniaxial tension tests were conducted at $150^{\circ}C$, $250^{\circ}C$ and $350^{\circ}C$. Based on these experimental data, the prediction models of stress-strain curve and the relationship of ratcheting strain and number of cycles were established by the algorithm principle of BP neural network. The results indicated that the predicted results of neural network model were in well agreement with experimental data. It was found that the BP neural network model had high validity and accuracy.

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.

Passive, semi-active, and active tuned-liquid-column dampers

  • Chen, Yung-Hsiang;Ding, Ying-Jan
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • The dynamic characteristics of the passive, semi-active, and active tuned-liquidcolumn dampers (or TLCDs) are studied in this paper. The design of the latter two are based on the first one. A water-head difference (or simply named as water head in this paper) of a passive TLCD is pre-set to form the so-called semi-active one in this paper. The pre-set of water head is released at a proper time instant during an earthquake excitation in order to enhance the vibration reduction of a structure. Two propellers are installed along a shaft inside and at the center of a passive TLCD to form an active one. These two propellers are driven by a servo-motor controlled by a computer to provide the control force. The seismic responses of a five-story shear building with a passive, semiactive, and active TLCDs are computed for demonstration and discussion. The responses of this building with a tuned mass damper (or TMD) are also included for comparison. The small-scale shaking-table experiments of a pendulum-like system with a passive or active TLCD to harmonic and seismic excitations are conducted for verification.

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.