• Title/Summary/Keyword: servo press

Search Result 62, Processing Time 0.032 seconds

Position and Pressure Control Using Hydraulic Axis Digital Controller (유압단축제어기(HACD)를 사용한 위치 및 압력제어)

  • Kim, D.H.;Huh, J.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2011
  • These days the injection molding work and press work are in the trend of needing the precision control of position and pressure in a high speed. On the other hand the digital computer technology is developing rapidly. And recently the digital servo controller using micro controller become to be used more broadly, because of the merit of digital communication. In this study the sequential control of hydraulic system switching from position to pressure and to position is tried using the HACD(Hydraulic Axis Controller Digital for electrohydraulic drives) which is manufactured by BoschRexroth. Through this, the possibility of the precision sequential control using the digital servo controller HACD is examined.

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

Study on development of Fine Blanking Press for Triple Action in Electronic Servo Control (전자서보제어 삼축압을 이용한 파인 블랭킹 프레스 개발에 관한 연구)

  • Choi, Kye-Kwang;Jo, Yun-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.747-750
    • /
    • 2009
  • 국내에서 파인 블랭킹 프레스는 대기업이나 중소기업, 국책 연구소 등 개발에 성공한 곳은 어느 곳도 없다. 국내에서는 최초로 S사에서 자체의 기술로 400톤 파인 블랭킹 프레스를 설계, 제작, 조립하여 개발하였다. 700톤 파인 블랭킹 프레스의 개발로 인하여 수입에만 의존한 것을 국산화하여 원가절감 및 국제 경쟁력 강화에 기여할 수 있다.

  • PDF

Development of Vehicle Clutch Discs Cushion Variation Measurement Device Using a Variable Load Electric Press (하중 가변형 전동 프레스를 이용한 차량용 클러치 디스크 쿠션 변위량 측정 장치 개발)

  • Park, Seung-Gyu;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.64-69
    • /
    • 2016
  • Vehicle clutch measurement for disc cushion variation was developed for the production of high quality Dual clutch transmissions. The developed device is composed of load cells for load measurement and LVDT for measuring the distance variation measurement in cushion variation. The servo motor-driven electric press for flexible loads that was developed was controlled by a PC-based HMI system, LabVIEW, and the device was able to continuously record real time measurement data with the accuracies of ${\pm}0.1\;kgf$ load and ${\pm}5{\mu}m$ cushion amount, which is far above the requirements of commercial vehicle standards.

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path (비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상)

  • Jeong, Hyun Gi;Jang, Eun Hyuk;Song, Youn Jun;Chung, Wan Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

Novel aspects of elastic flapping wing: Analytical solution for inertial forcing

  • Zare, Hadi;Pourtakdoust, Seid H.;Bighashdel, Ariyan
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.335-348
    • /
    • 2018
  • The structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs) is investigated analytically as a novel approach in EFWs analysis. In this regard an analytical SD solution of EFW undergoing a prescribed rigid body motion is initially derived, where the governing equations are expressed in modal space. The inertial forces are also analytically computed utilizing the actuator induced acceleration effects on the wing structure, while due to importance of analytical solution the linearity assumption is also considered. The formulated initial-value problem is solved analytically to study the EFW structural responses, where the effect of structure-actuator frequency ratio, structure-flapping frequency ratio as well as the structure damping ratio on the EFW pick amplitude is analyzed. A case study is also simulated in which the wing is modeled as an elastic beam with shell elements undergoing a prescribed sinusoidal motion. The corresponding EFW transient and steady response in on-off servo behavior is investigated. This study provides a conceptual understanding for the overall EFW SD behavior in the presence of inertial forces plus the servo dynamics effects. In addition to the substantial analytical results, the study paves a new mathematical way to better understanding the complex role of SD in dynamic EFWs behavior. Specifically, similar mathematical formulations can be carried out to investigate the effect of aerodynamics and/or gravity.

A prototype to improve endurance of solar powered aircraft using MPPT and rechargeable battery

  • Leo Paul Amuthan George;Anju Anna Jacob
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • This paper addresses the enhancement of long-endurance solar-powered aircraft through the integration of a rechargeable battery and Maximum Power Point Tracking (MPPT) controller. Traditional long-endurance aircraft often rely on non-renewable energy sourcessuch as batteries orjetfuel, contributing to carbon emissions. The proposed system aims to mitigate these environmental impacts by harnessing solar energy and efficiently managing its storage and utilization. The MPPT controller optimizes the power output of photovoltaic cells, enabling simultaneous charging and discharging of the battery for propulsion and servo control. A prototype is presented to illustrate the practical implementation and functionality of the proposed design, marking a promising step towards more sustainable and enduring solar-powered flight.

An optimal discrete-time feedforward compensator for real-time hybrid simulation

  • Hayati, Saeid;Song, Wei
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.483-498
    • /
    • 2017
  • Real-Time Hybrid Simulation (RTHS) is a powerful and cost-effective dynamic experimental technique. To implement a stable and accurate RTHS, time delay present in the experiment loop needs to be compensated. This delay is mostly introduced by servo-hydraulic actuator dynamics and can be reduced by applying appropriate compensators. Existing compensators have demonstrated effective performance in achieving good tracking performance. Most of them have been focused on their application in cases where the structure under investigation is subjected to inputs with relatively low frequency bandwidth such as earthquake excitations. To advance RTHS as an attractive technique for other engineering applications with broader excitation frequency, a discrete-time feedforward compensator is developed herein via various optimization techniques to enhance the performance of RTHS. The proposed compensator is unique as a discrete-time, model-based feedforward compensator. The feedforward control is chosen because it can substantially improve the reference tracking performance and speed when the plant dynamics is well-understood and modeled. The discrete-time formulation enables the use of inherently stable digital filters for compensator development, and avoids the error induced by continuous-time to discrete-time conversion during the compensator implementation in digital computer. This paper discusses the technical challenges in designing a discrete-time compensator, and proposes several optimal solutions to resolve these challenges. The effectiveness of compensators obtained via these optimal solutions is demonstrated through both numerical and experimental studies. Then, the proposed compensators have been successfully applied to RTHS tests. By comparing these results to results obtained using several existing feedforward compensators, the proposed compensator demonstrates superior performance in both time delay and Root-Mean-Square (RMS) error.