• Title/Summary/Keyword: services

Search Result 35,389, Processing Time 0.056 seconds

Analysis of the Impact of Generative AI based on Crunchbase: Before and After the Emergence of ChatGPT (Crunchbase를 바탕으로 한 Generative AI 영향 분석: ChatGPT 등장 전·후를 중심으로)

  • Nayun Kim;Youngjung Geum
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.3
    • /
    • pp.53-68
    • /
    • 2024
  • Generative AI is receiving a lot of attention around the world, and ways to effectively utilize it in the business environment are being explored. In particular, since the public release of the ChatGPT service, which applies the GPT-3.5 model, a large language model developed by OpenAI, it has attracted more attention and has had a significant impact on the entire industry. This study focuses on the emergence of Generative AI, especially ChatGPT, which applies OpenAI's GPT-3.5 model, to investigate its impact on the startup industry and compare the changes that occurred before and after its emergence. This study aims to shed light on the actual application and impact of generative AI in the business environment by examining in detail how generative AI is being used in the startup industry and analyzing the impact of ChatGPT's emergence on the industry. To this end, we collected company information of generative AI-related startups that appeared before and after the ChatGPT announcement and analyzed changes in industry, business content, and investment information. Through keyword analysis, topic modeling, and network analysis, we identified trends in the startup industry and how the introduction of generative AI has revolutionized the startup industry. As a result of the study, we found that the number of startups related to Generative AI has increased since the emergence of ChatGPT, and in particular, the total and average amount of funding for Generative AI-related startups has increased significantly. We also found that various industries are attempting to apply Generative AI technology, and the development of services and products such as enterprise applications and SaaS using Generative AI has been actively promoted, influencing the emergence of new business models. The findings of this study confirm the impact of Generative AI on the startup industry and contribute to our understanding of how the emergence of this innovative new technology can change the business ecosystem.

  • PDF

Practice guidelines for managing extrahepatic biliary tract cancers

  • Hyung Sun Kim;Mee Joo Kang;Jingu Kang;Kyubo Kim;Bohyun Kim;Seong-Hun Kim;Soo Jin Kim;Yong-Il Kim;Joo Young Kim;Jin Sil Kim;Haeryoung Kim;Hyo Jung Kim;Ji Hae Nahm;Won Suk Park;Eunkyu Park;Joo Kyung Park;Jin Myung Park;Byeong Jun Song;Yong Chan Shin;Keun Soo Ahn;Sang Myung Woo;Jeong Il Yu;Changhoon Yoo;Kyoungbun Lee;Dong Ho Lee;Myung Ah Lee;Seung Eun Lee;Ik Jae Lee;Huisong Lee;Jung Ho Im;Kee-Taek Jang;Hye Young Jang;Sun-Young Jun;Hong Jae Chon;Min Kyu Jung;Yong Eun Chung;Jae Uk Chong;Eunae Cho;Eui Kyu Chie;Sae Byeol Choi;Seo-Yeon Choi;Seong Ji Choi;Joon Young Choi;Hye-Jeong Choi;Seung-Mo Hong;Ji Hyung Hong;Tae Ho Hong;Shin Hye Hwang;In Gyu Hwang;Joon Seong Park
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.28 no.2
    • /
    • pp.161-202
    • /
    • 2024
  • Backgrounds/Aims: Reported incidence of extrahepatic bile duct cancer is higher in Asians than in Western populations. Korea, in particular, is one of the countries with the highest incidence rates of extrahepatic bile duct cancer in the world. Although research and innovative therapeutic modalities for extrahepatic bile duct cancer are emerging, clinical guidelines are currently unavailable in Korea. The Korean Society of Hepato-Biliary-Pancreatic Surgery in collaboration with related societies (Korean Pancreatic and Biliary Surgery Society, Korean Society of Abdominal Radiology, Korean Society of Medical Oncology, Korean Society of Radiation Oncology, Korean Society of Pathologists, and Korean Society of Nuclear Medicine) decided to establish clinical guideline for extrahepatic bile duct cancer in June 2021. Methods: Contents of the guidelines were developed through subgroup meetings for each key question and a preliminary draft was finalized through a Clinical Guidelines Committee workshop. Results: In November 2021, the finalized draft was presented for public scrutiny during a formal hearing. Conclusions: The extrahepatic guideline committee believed that this guideline could be helpful in the treatment of patients.

Exhibition Hall Lighting Design that Fulfill High CRI Based on Natural Light Characteristics - Focusing on CRI Ra, R9, R12 (자연광 특성 기반 고연색성 실현 전시관 조명 설계 - CRI Ra, R9, R12를 중심으로)

  • Ji-Young Lee;Seung-Teak Oh;Jae-Hyun Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.65-72
    • /
    • 2024
  • To faithfully represent the intention of the work in the exhibition space, lighting that provides high color reproduction like natural light is required. Thus, many lighting technologies have been introduced to improve CRI, but most of them only evaluated the general color rendering index (CRI Ra), which considers eight pastel colors. Natural light provides excellent color rendering performance for all colors, including red and blue, expressed by color rendering index of R9 and R12, but most artificial lighting has the problem that color rendering performance such as R9 and R12 is significantly lower than that of natural light. Recently, lighting technology that provides CRI at the level of natural light is required to realistically express the colors of works including primary colors but related research is very insufficient. Therefore this paper proposes exhibition hall lighting that fulfills CRI with a focus on CRI Ra, R9, and R12 based on the characteristics of natural light. First reinforcement wavelength bands for improving R9 and R12 are selected through analysis of the actual measurement SPD of natural and artificial lighting. Afterward virtual SPDs with a peak wavelength within the reinforcement wavelength band are created and then SPD combination conditions that satisfy CRI Ra≥95, R9, and R12≥90 are derived through combination simulation with a commercial LED light source. Through this, after specifying two types of light sources with 405,630nm peak wavelength that had the greatest impact on the improvement of R9 and R12, the exhibition hall lighting applied with two W/C White LEDs is designed and a control Index DB of the lighting is constructed. Afterward experiments with the proposed method showed that it was possible to achieve high CRI at the level of natural light with average CRI Ra 96.5, R9 96.2, and R12 94.0 under the conditions of illuminance (300-1,000 Lux) and color temperature (3,000-5,000K).

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.

Developing domestic flood resilience indicators and assessing applicability and significance (국내 홍수회복력 지표 개발과 적용성 및 중요도 평가)

  • Kim, Soohong;Jung, Kichul;Kang, Hyeongsik;Shin, Seoyoung;Kim, Jieun;Park, Daeryong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.533-548
    • /
    • 2024
  • Due to climate change with extreme weather events, occurrences of unprecedented heavy rainfall have become more frequent. Since it is difficult to perfectly predict and prevent flood damages, the limitation of traditional prevention-centered approaches has come a issue. The concept of "resilience" has therefore been developed which emphasizes the ability to swiftly recover from damages to previous states or to even better conditions. In this study, we 1) developed a total of 20 domestic flood resilience indicators based on the 4R principles (Redundancy, Robustness, Rapidity, Resourcefulness), 2) conducted applicability evaluations targeting specific disaster-prone areas, and 3) assessed the importance of each indicator through Analytic Hierarchy Process (AHP) analysis with flood-related experts. To confirm the suitability of the developed flood resilience indicators, multicollinearity analysis was performed, and the results indicated that all 20 indicators had tolerance limits above 0.1 and Variance Inflation Factors (VIF) below 10, demonstrating suitability as factors. Furthermore, evaluations of proposed indicators were carried out targeting disaster-prone areas in 2022(21 areas), and AHP analysis was utilized to determine the relative importance of each indicator. The analysis revealed that the importance of each indicator was as follows: Robustness 0.46, Rapidity 0.22, Redundancy 0.17, and Resourcefulness 0.16, with Robustness exhibiting the highest importance. Regarding the sub-indicators that had the greatest influence on each 4R component, river embankment maintenance emerged as the most influential for Robustness, healthcare services for Rapidity, fiscal autonomy of local governments for Resourcefulness, and drainage facilities for Redundancy.

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

Factor Influencing Unmet Healthcare Needs among People with Disabilities (장애인의 미충족의료 경험에 영향을 미치는 요인)

  • Bo Hui Park;Kyoung Eun Yeob;Eun Hye Choi;So Young Kim;Jong Hyock Park
    • Health Policy and Management
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2024
  • Background: The unmet healthcare needs (UHNs) of people with disabilities (PWD) are not only detrimental to their quality of life but also can lead to serious health outcomes including death. A variety of factors including socioeconomic, personal, and environmental factors affect UHNs for PWD. Previous studies focused on individual socioeconomic and disability characteristics as influencing factors. Our studies included environmental factors that have a significant impact on the use of healthcare service by PWD. Methods: We analyzed the UHNs status and influencing factors among 4,326 adults with disabilities using the Korea Disability Life Data. Chisquare analysis identified differences in UHNs by general, disability, and environmental characteristics. Logistic regression determined factors affecting UHNs. Results: Those with low educational level (adjusted odds ratio [aOR], 1.229; 95% confidence interval [CI], 1.024-1.475), those with low income level (aOR, 1.416; 95% CI, 1.015-1.976), those who enrolled in private insurance (aOR, 1.234; 95% CI, 1.018-1.496), those who need help with daily living (aOR, 1.298; 95% CI, 1.059-1.592), those who did not go out (OR, 1.566; 95% CI, 1.274-1.924), those who use taxis (aOR, 1.407; 95% CI, 1.047-1.891) or call taxi for people with disabilities when going to the hospital (aOR, 1.370; 95% CI, 1.001-1.875), the communication disabled (aOR, 1.304; 95% CI, 1.029-1.651), those with poor subjective health status (aOR, 1.248; 95% CI, 1.043-1.494), those who felt the explanation of treatment results was insufficient (aOR, 4.035; 95% CI, 1.365-11.927), hose dissatisfied with healthcare services (aOR, 3.515; 95% CI, 2.741-4.508) were more likely to experience UHNs. Conclusion: Effective healthcare service provision for PWD requires not only financial assistance but also social support, along with education for healthcare staff, policies that consider the characteristics of disabilities.

Estimation of Adult Season of Occurrence and Annual Generation Numbers of the Asiatic Pink Stem Borer, Sesamia inferens (Walker, 1856) (Lepidoptera: Noctuidae) (벼밤나방(Sesamia inferens (Walker, 1856))(나비목: 밤나방과) 성충 발생시기와 연중 세대수 추정)

  • Eun Young Kim;Young-Mi Park;Soon Do Bae;Gwan-Seok Lee;Chae-Hoon Paik;Do-Ik Kim;Wonhoon Lee;Jin Kyo Jung;Bo Yoon Seo
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.227-243
    • /
    • 2023
  • The Asiatic pink stem borer, Sesamia inferens (Walker, 1856) (Lepidoptera: Noctuidae) is a pest that attacks rice stems. In this study, we estimated the annual generation of insect in several regions of the Republic of Korea. Adult trapping using a sex pheromone trap detected the occurrence of S. inferens adults in the three northernmost areas around 38° latitude and showed that the insect inhabits all of Korea. In most areas investigated, the seasons of the adult generations estimated using the single-sine degree-day model did not deviate from the corresponding observed seasons of adult occurrence. We estimated that the overwintering larvae hypothetically-estimated using the model could be originated from the last generation of adults. When larvae collected in paddy fields during the autumn season in a few middle and southern areas were reared at 25℃, ca. 70% of pupae did not show additional larval molting before their pupation. All larvae collected in early March in a southern area (Goseong, Gyeongsangnam-do) pupated without additional larval molting when reared at 25℃. Based on these results, we presumed that S. inferens could overwinter as mainly the last instar larval stage in the area. Taken together, we conclude that S. inferens primarily has two generations per year in areas around 38° latitude, and three generations in the areas between 35.3° and 37.3° latitude. In addition, approximately 35% of insects captured by the sex pheromone trap were species other than S. inferens, as determined by analyzing the nucleotide sequences of the cytochrome c oxidase 1 gene. These species were not morphologically misidentified as S. inferens.

The Relations between Financial Constraints and Dividend Smoothing of Innovative Small and Medium Sized Enterprises (혁신형 중소기업의 재무적 제약과 배당스무딩간의 관계)

  • Shin, Min-Shik;Kim, Soo-Eun
    • Korean small business review
    • /
    • v.31 no.4
    • /
    • pp.67-93
    • /
    • 2009
  • The purpose of this paper is to explore the relations between financial constraints and dividend smoothing of innovative small and medium sized enterprises(SMEs) listed on Korea Securities Market and Kosdaq Market of Korea Exchange. The innovative SMEs is defined as the firms with high level of R&D intensity which is measured by (R&D investment/total sales) ratio, according to Chauvin and Hirschey (1993). The R&D investment plays an important role as the innovative driver that can increase the future growth opportunity and profitability of the firms. Therefore, the R&D investment have large, positive, and consistent influences on the market value of the firm. In this point of view, we expect that the innovative SMEs can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. And also, we expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Aivazian et al.(2006) exert that the financial unconstrained firms with the high accessibility to capital market can adjust dividend payment faster than the financial constrained firms. We collect the sample firms among the total SMEs listed on Korea Securities Market and Kosdaq Market of Korea Exchange during the periods from January 1999 to December 2007 from the KIS Value Library database. The total number of firm-year observations of the total sample firms throughout the entire period is 5,544, the number of firm-year observations of the dividend firms is 2,919, and the number of firm-year observations of the non-dividend firms is 2,625. About 53%(or 2,919) of these total 5,544 observations involve firms that make a dividend payment. The dividend firms are divided into two groups according to the R&D intensity, such as the innovative SMEs with larger than median of R&D intensity and the noninnovative SMEs with smaller than median of R&D intensity. The number of firm-year observations of the innovative SMEs is 1,506, and the number of firm-year observations of the noninnovative SMEs is 1,413. Furthermore, the innovative SMEs are divided into two groups according to level of financial constraints, such as the financial unconstrained firms and the financial constrained firms. The number of firm-year observations of the former is 894, and the number of firm-year observations of the latter is 612. Although all available firm-year observations of the dividend firms are collected, deletions are made in the case of financial industries such as banks, securities company, insurance company, and other financial services company, because their capital structure and business style are widely different from the general manufacturing firms. The stock repurchase was involved in dividend payment because Grullon and Michaely (2002) examined the substitution hypothesis between dividends and stock repurchases. However, our data structure is an unbalanced panel data since there is no requirement that the firm-year observations data are all available for each firms during the entire periods from January 1999 to December 2007 from the KIS Value Library database. We firstly estimate the classic Lintner(1956) dividend adjustment model, where the decision to smooth dividend or to adopt a residual dividend policy depends on financial constraints measured by market accessibility. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between current payout rato and target payout ratio each year. In the Lintner model, dependent variable is the current dividend per share(DPSt), and independent variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt). We hypothesized that firms adjust partially the gap between the current dividend per share(DPSt) and the target payout ratio(Ω) each year, when the past dividend per share(DPSt-1) deviate from the target payout ratio(Ω). We secondly estimate the expansion model that extend the Lintner model by including the determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory. In the expansion model, dependent variable is the current dividend per share(DPSt), explanatory variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt), and control variables are the current capital expenditure ratio(CEAt), the current leverage ratio(LEVt), the current operating return on assets(ROAt), the current business risk(RISKt), the current trading volume turnover ratio(TURNt), and the current dividend premium(DPREMt). In these control variables, CEAt, LEVt, and ROAt are the determinants suggested by the residual dividend theory and the agency theory, ROAt and RISKt are the determinants suggested by the dividend signaling theory, TURNt is the determinant suggested by the transactions cost theory, and DPREMt is the determinant suggested by the catering theory. Furthermore, we thirdly estimate the Lintner model and the expansion model by using the panel data of the financial unconstrained firms and the financial constrained firms, that are divided into two groups according to level of financial constraints. We expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, because the former can finance more easily the investment funds through the market accessibility than the latter. We analyzed descriptive statistics such as mean, standard deviation, and median to delete the outliers from the panel data, conducted one way analysis of variance to check up the industry-specfic effects, and conducted difference test of firms characteristic variables between innovative SMEs and noninnovative SMEs as well as difference test of firms characteristic variables between financial unconstrained firms and financial constrained firms. We also conducted the correlation analysis and the variance inflation factors analysis to detect any multicollinearity among the independent variables. Both of the correlation coefficients and the variance inflation factors are roughly low to the extent that may be ignored the multicollinearity among the independent variables. Furthermore, we estimate both of the Lintner model and the expansion model using the panel regression analysis. We firstly test the time-specific effects and the firm-specific effects may be involved in our panel data through the Lagrange multiplier test that was proposed by Breusch and Pagan(1980), and secondly conduct Hausman test to prove that fixed effect model is fitter with our panel data than the random effect model. The main results of this study can be summarized as follows. The determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory explain significantly the dividend policy of the innovative SMEs. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between the current payout ratio and the target payout ratio each year. In the core variables of Lintner model, the past dividend per share has more effects to dividend smoothing than the current earnings per share. These results suggest that the innovative SMEs maintain stable and long run dividend policy which sustains the past dividend per share level without corporate special reasons. The main results show that dividend adjustment speed of the innovative SMEs is faster than that of the noninnovative SMEs. This means that the innovative SMEs with high level of R&D intensity can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. The other main results show that dividend adjustment speed of the financial unconstrained SMEs is faster than that of the financial constrained SMEs. This means that the financial unconstrained firms with high accessibility to capital market can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Futhermore, the other additional results show that dividend adjustment speed of the innovative SMEs classified by the Small and Medium Business Administration is faster than that of the unclassified SMEs. They are linked with various financial policies and services such as credit guaranteed service, policy fund for SMEs, venture investment fund, insurance program, and so on. In conclusion, the past dividend per share and the current earnings per share suggested by the Lintner model explain mainly dividend adjustment speed of the innovative SMEs, and also the financial constraints explain partially. Therefore, if managers can properly understand of the relations between financial constraints and dividend smoothing of innovative SMEs, they can maintain stable and long run dividend policy of the innovative SMEs through dividend smoothing. These are encouraging results for Korea government, that is, the Small and Medium Business Administration as it has implemented many policies to commit to the innovative SMEs. This paper may have a few limitations because it may be only early study about the relations between financial constraints and dividend smoothing of the innovative SMEs. Specifically, this paper may not adequately capture all of the subtle features of the innovative SMEs and the financial unconstrained SMEs. Therefore, we think that it is necessary to expand sample firms and control variables, and use more elaborate analysis methods in the future studies.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.