Kim, Jonghoon;Lee, Seokjun;Kim, Dongha;Kim, Incheol
Journal of KIISE
/
v.43
no.12
/
pp.1365-1375
/
2016
One of the most important capabilities for autonomous service robots working in living environments is to recognize and understand the correct context in dynamically changing environment. To generate high-level context knowledge for decision-making from multiple sensory data streams, many technical problems such as multi-modal sensory data fusion, uncertainty handling, symbolic knowledge grounding, time dependency, dynamics, and time-constrained spatio-temporal reasoning should be solved. Considering these problems, this paper proposes an effective dynamic context management and spatio-temporal reasoning method for intelligent service robots. In order to guarantee efficient context management and reasoning, our algorithm was designed to generate low-level context knowledge reactively for every input sensory or perception data, while postponing high-level context knowledge generation until it was demanded by the decision-making module. When high-level context knowledge is demanded, it is derived through backward spatio-temporal reasoning. In experiments with Turtlebot using Kinect visual sensor, the dynamic context management and spatio-temporal reasoning system based on the proposed method showed high performance.
In this paper, we propose a robot-centered direction relation representation and the relevant reasoning methods for indoor service robots. Many conventional works on qualitative spatial reasoning, when deciding the relative direction relation of the target object, are based on the use of position information only. These reasoning methods may infer an incorrect direction relation of the target object relative to the robot, since they do not take into consideration the heading direction of the robot itself as the base object. In this paper, we present a robot-centered direction relation representation and the reasoning methods. When deciding the relative directional relationship of target objects based on the robot in an indoor environment, the proposed methods make use of the orientation information as well as the position information of the robot. The robot-centered reasoning methods are implemented by extending the existing cone-based, matrix-based, and hybrid methods which utilized only the position information of two objects. In various experiments with both the physical Turtlebot and the simulated one, the proposed representation and reasoning methods displayed their high performance and applicability.
In this study, we analyzed pre-service teachers' levels of pedagogical reasoning while watching video clips of elementary school students' discussions of their conceptions of solution and dissolution. 81 pre-service teachers participated in the study. It was found that many pre-service teachers had scientific conceptions, and pre-service teachers who had non-scientific conceptions showed misconceptions similar to those of elementary school students. In both conceptions, pre-service teachers partially or comprehensively interpreted the students' misconceptions with reference to the evidence. However, the rates of pre-service teachers who misinterpreted or simply restated the students' utterances were quite high. Many pre-service teachers suggested only one factor related to levels of reasoning about causes of misconceptions, and most suggested factors were related to the student factor. The level of reasoning about instructional decisions differed according to dissolution and solution conceptions. Actions linked to students' thinking were more closely related to students' specific thinking than to their generic thinking, and among these, student-centered action was seen. From the above results, we sought ways of improving pre-service teachers' pedagogical reasoning.
In this paper we investigate a trend analysis service using Semantic Web technology in a news domain. The trend analysis service can provide more intelligent answers rather than the answer given In current news search engines since it can analyze the passage of time and the relation among news. In order to provide the trend analysis service, the capability of temporal reasoning is required, but the Semantic Web language such as OWL does not support the reasoning capability. Therefore, we propose a language TL-OWL(Temporal Web Ontology Language) extending OWL with the temporal reasoning.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.2
/
pp.174-190
/
2010
In ubiquitous computing, invisible devices and software are connected to one another to provide convenient services to users [1][2]. Users hope to obtain a personalized service which is composed of customized devices among sharable devices in a ubiquitous smart space (which is called USS in this paper). However, the situations of each user are different and user preferences also are various. Although users request the same service in the same USS, the most suitable devices for composing the service are different for each user. For these user requirements, this paper proposes a device recommender system which infers and recommends customized devices for composing a user required service. The objective of this paper is the development of the systems for recommending devices through context-aware inference in peer-to-peer environments. For this goal, this paper considers the context and user preference. Also I implement a prototype system and test performance on the real ubiquitous mobile object (UMO).
IEMEK Journal of Embedded Systems and Applications
/
v.4
no.3
/
pp.139-147
/
2009
This paper proposed the context awareness reasoning system to provide the personalized services dynamically in a ubiquitous mobile environments. The proposed system is designed to provide the personalized services to mobile users and consists of the context aggregator and the knowledge manager. The context aggregator can collect information from networks through Open API Gateway as well as sensors in a various ubiquitous environment. And it can also extract the place types through the geocoding and the social address domain ontology. The knowledge manager is the core component to provide the personalized services, and consists of activity reasoner, user pattern learner and service recommender to provide the services predict by extracting the optimized service from user situations. Activity reasoner uses the ontology reasoning and user pattern learner learns with previous service usage history and contexts. And to design service recommender easy to flexibly apply in dynamic environments, service recommender recommends service in the only use of current accessible contexts. Finally, we evaluate the learner and recommender of proposed system by simulation.
Cloud computing is internet-based computing where computing resources are offered over the Internet as scalable and on-demand services. In particular, in case a number of various cloud services emerge in accordance with development of internet and mobile technology, to select and provide services with which service users satisfy is one of the important issues. Most of previous works show the limitation in the degree of user satisfaction because they are based on so called concept similarity in relation to user requirements or are lack of versatility of user preferences. This paper presents cloud service selection reasoning which can be applied to the general cloud service environments including a variety of computing resource services, not limited to web services. In relation to the service environments, there are two kinds of services: atomic service and composite service. An atomic service consists of service attributes which represent the characteristics of service such as functionality, performance, or specification. A composite service can be created by composition of atomic services and other composite services. Therefore, a composite service inherits attributes of component services. On the other hand, the main participants in providing with cloud services are service users, service suppliers, and service operators. Service suppliers can register services autonomously or in accordance with the strategic collaboration with service operators. Service users submit request queries including service name and requirements to the service management system. The service management system consists of a query processor for processing user queries, a registration manager for service registration, and a selection engine for service selection reasoning. In order to enhance the degree of user satisfaction, our reasoning stands on basis of the degree of conformance to user requirements of service attributes in terms of functionality, performance, and specification of service attributes, instead of concept similarity as in ontology-based reasoning. For this we introduce so called a service attribute graph (SAG) which is generated by considering the inclusion relationship among instances of a service attribute from several perspectives like functionality, performance, and specification. Hence, SAG is a directed graph which shows the inclusion relationships among attribute instances. Since the degree of conformance is very close to the inclusion relationship, we can say the acceptability of services depends on the closeness of inclusion relationship among corresponding attribute instances. That is, the high closeness implies the high acceptability because the degree of closeness reflects the degree of conformance among attributes instances. The degree of closeness is proportional to the path length between two vertex in SAG. The shorter path length means more close inclusion relationship than longer path length, which implies the higher degree of conformance. In addition to acceptability, in this paper, other user preferences such as priority for attributes and mandatary options are reflected for the variety of user requirements. Furthermore, to consider various types of attribute like character, number, and boolean also helps to support the variety of user requirements. Finally, according to service value to price cloud services are rated and recommended to users. One of the significances of this paper is the first try to present a graph-based selection reasoning unlike other works, while considering various user preferences in relation with service attributes.
This study analyzed the quality of mathematics classes with observations using the instrument, MQI(Mathematical Quality of Instruction). Class recordings and interviews were conducted on 2 pre-service teachers and 4 in-service teachers. This study recorded and analyzed 3 or 4 classes for each mathematics teacher by using revised MQI. There were a total of 8 raters: 2 or 3 raters analyzed each class. MQI has four dimensions: Richness of the Mathematics, Working with Students and Mathematic, Errors and Imprecision, Student Participation in Meaning-Making and Reasoning. In the dimension of 'Richness of Mathematics', all teachers had good scores of 'explanations of teacher' but had lower scores of 'linking and connections', 'multiple procedures or solution methods' and 'developing mathematical generalizations.' In the dimension of 'Working with Students and Mathematics', two in-service teachers who have worked and having more experience had higher scores than others. In the dimension of 'Errors and Imprecision', all teachers had high scores. In the dimension of 'Student Participation in Meaning-Making and Reasoning', two pre-service teachers had contrast and also two in-service teachers who hadn't worked not long had contrast. Implications were deducted from finding to improving quality of mathematics classes.
KIPS Transactions on Software and Data Engineering
/
v.1
no.1
/
pp.19-30
/
2012
The context aware service is the service to provide useful information to the users by recognizing surroundings around people who receive the service via computer based on computing and communication, and by conducting self-decision. But CAS(Context Awareness System) shows the weak point of small-scale context awareness processing capacity due to restricted mobile function under the current mobile environment, memory space, and inference cost increment. In this paper, we propose a mobile cloud context system with using Google App Engine based on PaaS(Platform as a Service) in order to get context service in various mobile devices without any subordination to any specific platform. Inference design method of the proposed system makes use of knowledge-based framework with semantic inference that is presented by SWRL rule and OWL ontology and Jess with rule-based inference engine. As well as, it is intended to shorten the context service reasoning time with mapping the regular reasoning of SWRL to Jess reasoning engine by connecting the values such as Class, Property and Individual which are regular information in the form of SWRL to Jess reasoning engine via JessTab plug-in in order to overcome the demerit of queries reasoning method of SparQL in semantic search which is a previous reasoning method.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.7
/
pp.907-912
/
2007
The present level of ubiquitous computing technology have developed to the point where Home-server provides services that user require directly for user in the intelligent space. But it will need intelligent system to provides more active services for user in the near future. In this paper, we define the environment information about situation that user is in as Context, and collect the Context that stereotype as 4W1H form for construct the system that can decision service will be provide from information about a situation that user is in, without user's involvement. Additionally we collect information about user's emotional state, use these informations as nodes of Bayesian network for probabilistic reasoning. From that, we materialize Context Awareness system about it that what kind of situation user is in. And, we propose the Context-based Service reasoning model using Bayesian Network from the result of Context Awareness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.