• Title/Summary/Keyword: service life prediction models

Search Result 55, Processing Time 0.024 seconds

Prediction of RC structure service life from field long term chloride diffusion

  • Safehian, Majid;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.589-606
    • /
    • 2015
  • It is well-documented that the major deterioration of coastal RC structures is chloride-induced corrosion. Therefore, regional investigations are necessary for durability based design and evaluation of the proposed service life prdiction models. In this paper, four reinforced concrete jetties exposed to severe marine environment were monitored to assess the long term chloride penetration at 6 months to 96 months. Also, some accelerated durability tests were performed on standard samples in laboratory. As a result, two time-dependent equations are proposed for basic parameters of chloride diffusion into concrete and then the corrosion initiation time is estimated by a developed probabilistic service life model Also, two famous service life prediction models are compared using chloride profiles obtained from structures after about 40 years in the tidal exposure conditions. The results confirm that the influence of concrete quality on diffusion coefficients is related to the concrete pore structure and the time dependence is due to chemical reactions of sea water ions with hydration products which lead a reduction in pore structure. Also, proper attention to the durability properties of concrete may extend the service life of marine structures greater than fifty years, even in harsh environments.

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

Evaluation of Service Life Prediction Models for Concrete Structure (I) (콘크리트 구조물의 수명예측을 위한 모델 분석 및 평가에 관한 연구 (I))

  • 김도겸;이종석;이장화;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.731-736
    • /
    • 1998
  • Deteriorations of concrete are governed by combined factors such as environmental stressors, processes and rates of deteriorations. Due to this reason, it's very difficult and important issue to predict quantitatively the service life of concrete structure. From this pont of views, the purpose of this study is to propose the approaches on the further development for predicting the remaining service life of concrete by analyzing the deteriorations mechanism and evaluating the existing models.

  • PDF

Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress

  • Zambon, Ivan;Vidovic, Anja;Strauss, Alfred;Matos, Jose;Friedl, Norbert
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.305-320
    • /
    • 2018
  • The second half of the 20th century was marked with a significant raise in amount of railway bridges in Austria made of reinforced concrete. Today, many of these bridges are slowly approaching the end of their envisaged service life. Current methodology of assessment and evaluation of structural condition is based on visual inspections, which, due to its subjectivity, can lead to delayed interventions, irreparable damages and additional costs. Thus, to support engineers in the process of structural evaluation and prediction of the remaining service life, the Austrian Federal Railways (${\ddot{O}}$ BB) commissioned the formation of a concept for an anticipatory life cycle management of engineering structures. The part concerning concrete bridges consisted of forming a bridge management system (BMS) in a form of a web-based analysis tool, known as the LeCIE_tool. Contrary to most BMSs, where prediction of a condition is based on Markovian models, in the LeCIE_tool, the time-dependent deterioration mechanisms of chloride- and carbonation-induced corrosion are used as the most common deterioration processes in transportation infrastructure. Hence, the main aim of this article is to describe the background of the introduced tool, with a discussion on exposure classes and crucial parameters of chloride ingress and carbonation models. Moreover, the article presents a verification of the generated analysis tool through service life prediction on a dozen of bridges of the Austrian railway network, as well as a case study with a more detailed description and implementation of the concept applied.

Service-Life Prediction of Reinforced Concrete Structures under Corrosive Environment

  • Shimomura, Takumi
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.171-177
    • /
    • 2005
  • A comprehensive framework for numerical simulation of time-dependent performance change of reinforced concrete (RC) structures subjected to chloride attack is presented in this paper. The system is composed of simplified computational models for transport of moisture and chloride ions in concrete pore structure and crack, corrosion of reinforcement in concrete and mechanical behavior of RC member with reinforcement corrosion. Service-life of RC structures under various conditions is calculated.

Computer-aided approach of parameters influencing concrete service life and field validation

  • Papadakis, V.G.;Efstathiou, M.P.;Apostolopoulos, C.A.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Over the past decades, an enormous amount of effort has been expended in laboratory and field studies on concrete durability estimation. The results of this research are still either widely scattered in the journal literature or mentioned briefly in the standard textbooks. Moreover, the theoretical approaches of deterioration mechanisms with a predictive character are limited to some complicated mathematical models not widespread in practice. A significant step forward could be the development of appropriate software for computer-based estimation of concrete service life, including reliable mathematical models and adequate experimental data. In the present work, the basis for the development of a computer estimation of the concrete service life is presented. After the definition of concrete mix design and structure characteristics, as well as the consideration regarding the environmental conditions where the structure will be found, the concrete service life can be reliably predicted using fundamental mathematical models that simulate the deterioration mechanisms. The prediction is focused on the basic deterioration phenomena of reinforced concrete, such as carbonation and chloride penetration, that initiate the reinforcing bars corrosion. Aspects on concrete strength and the production cost are also considered. Field observations and data collection from existing structures are compared with predictions of service life using the above model. A first attempt to develop a database of service lives of different types of reinforced concrete structure exposed to varying environments is finally included.

Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration

  • Papadakis, Vagelis G.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.201-213
    • /
    • 2013
  • While recognizing the problem of reinforcement corrosion and premature structural deterioration of reinforced concrete (RC) structures as a combined effect of mechanical and environmental actions (carbonation, ingress of chlorides), emphasis is given on the effect of the latter, as most severe and unpredictable action. In this study, a simulation tool, based on proven predictive models utilizing principles of chemical and material engineering, for the estimation of concrete service life is applied on an existing reinforced concrete bridge (${\O}$resund Link) located in a chloride environment. After a brief introduction to the structure of the models used, emphasis is given on the physicochemical processes in concrete leading to chloride induced corrosion of the embedded reinforcement. By taking under consideration the concrete, structural and environmental properties of the bridge investigated, an accurate prediction of its service life is taking place. It was observed that the proposed, and already used, relationship of service lifetime- cover is almost identical with a mean line between the lines derived from the minimum and maximum critical values considered for corrosion initiation. Thus, an excellent agreement with the project specifications is observed despite the different ways used to approach the problem. Furthermore, different scenarios of concrete cover failure, in the case when a coating is utilized, and extreme deicing salts attack are also investigated.

Service Life Prediction for Steel Bridge Coatings with Type of Coating Systems (도장계 종류에 따른 강교 도장의 공용수명 예측)

  • Lee, Chan Young;Chang, Taesun
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.325-335
    • /
    • 2016
  • To predict service life of coating systems registered in Korean specifications for steel bridge coatings, field deterioration evaluation and accelerated weatherproof test were carried out, and deterioration models were drawn through regression analysis for evaluation results. For the coating systems that have not been used in field, regression analyses were carried out for the virtual evaluation results drawn by applying coordination factor to the field evaluation results for chlorinated rubber and urethane topcoat system. Service life prediction results showed that application of thermal sprayed coating (TSC) could extend service life of coatings to more than twice of general coatings.

A Micro-Mechanics Based Corrosion Model for the Prediction of Service Life in Reinforced Concrete Structures

  • Song, Ha-Won;Kim, Ho-Jin;Kim, Tae-Hwan;Byun, Keun-Joo;Lee, Seung-Hoon
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.100-107
    • /
    • 2005
  • Reinforcing steel bars in reinforced concrete structures are protected from corrosion by passive film on the steel surface inside concrete with high alkalinity. However, when the passive film breaks down due to chloride ion ingressed into the RC structures, a corrosion initiates at the surface of steel bars. Then, internal pressure by volume expansion of corrosion products in reinforcing bars induces cracking and spalling of cover concrete, which reduces not only durability performance but also structural performance in RC structures. In this paper, a service life prediction of RC structures is carried out by using a micro-mechanics based corrosion model. The corrosion model is composed of a chloride penetration model to evaluate the initiation of corrosion and an electric corrosion cell model and an oxygen diffusion model to evaluate the rate and the accumulated amounts of corrosion. Then, a corrosion cracking model is combined to the models to evaluate critical amount of corrosion product for initiation cracking in cover concrete. By implementing the models into a finite element analysis program, a time and space dependent corrosion analysis and a service life prediction of RC structures due to chloride attack are simulated and the results of the analysis are compared with test results. The effect of crack width on the corrosion and the service life of the RC structures are analyzed and discussed.

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF