• Title/Summary/Keyword: serine palmitoyltransferase(SPT)

Search Result 9, Processing Time 0.022 seconds

Expression of Human Serine Palmitoyltransferase Genes for Antibody Development (Antibody 제작을 위한 human serine palmitoyltransferase 유전자의 발현)

  • 김희숙
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.315-319
    • /
    • 2004
  • For antibody development of human serine palmitoyltransferase (SPT, EC 2.3.1.50), SPTLC1 and SPTLC2 genes were subcloned in pRset vector and expressed in E. coli BL21 (DE3)pLys cells. Eucaryotic SPT is a membrane-bound heterodimer enzyme, while all other members are soluble homodimer enzymes. cDNA library were obtained from total RNA from human embryo kidney cell line, HEK293, using RT-PCR and PCR with specific primers was carried out for preparing SPTLC1 and SPTLC2 genes. pRset vector which can express hexahistidine-tag fusion protein was used and the DNA sequences of pRsetB/SPTLC1 and pRsetA/SPTLC2 were confirmed. Recombinant BL21 cells with SPTLC subunits were selected with LB plate containing ampicillin and chroramphenicol. SPTLC1 and SPTLC2 proteins were induced with 1 mM IPTG and seperated on 10% SDS-PAGE gel. Expressed proteins were confirmed by western blotting with His-tag antibody.

The Effect of Jeju Wild Ginseng Extracts on Skin Barrier via Serine-Palmitoyltransferase (제주산양산삼이 세린-팔미토일 전이효소(Serine-Palmitoyltransferase)를 통해 피부 장벽에 미치는 효과에 대한 연구)

  • Kim, Hyo Min;Lee, Jung No;Kim, Jae Moon;Kim, Sung Kyu;Park, Sung-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • Skin is the largest organ that protects the body from the external environmental factors such as smog, cigarette smoke, UV. Protective skin barrier is composed with keratinizational keratinocytes and intercellular lipids such as ceramides, cholesterols and fatty acids combined by the lamellar liquid crystal structure. In this research, we confirmed that the Jeju wild ginseng (JWG) extracts dose-dependently increased the expression of serine-palmitoyltransferase (SPT) protein which is associated with ceramide biosynthesis. In addition, emulsion containing 5% JWG extract was applied on skin of human volunteers for 2 weeks and then significantly reduced transepidermal water loss (TEWL) compared to that of control group. As a results, JWG extract increased the biosynthesis of ceramides that is the key components of the skin lipid through enhancing expression of SPT. In addition, JWG extract reduced TEWL resulting in improvement of skin barrier function. In this context, we suggest that JWG extract could be used as a skin barrier enhancer and moisturing agents in cosmetic fileds.

The External Use Effects of Samwhangsejegami Extract on Atopic dermatitis of NC/Nga mice (삼황세제 가미방 외용이 NC/Nga 마우스의 아토피 피부염에 대한 효과)

  • Hwang, Chung-Yeon;Park, Min-Cheol;Hong, Seok-Hoon;Joo, Hyun-A;Cho, Hyun-Woo;Jung, Soo-Young;Cho, Jeong-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.25 no.1
    • /
    • pp.22-32
    • /
    • 2012
  • Objectives : In this study, Samhwangsaejaegami extract was tested to prove its anti-atopic dermatitis effect on NC/Nga mice. Methods : In order to evaluate the external use effects of Samhwangsaejae extract on anti-atopic dermatitis, the expression of filaggrin, serine palmitoyltransferase(SPT), and COX-2 were analyzed. In vivo study, clinical skin severity score, IgE, IL-4, IL-5 and IL-6 level were analyzed through NC/Nga atopic mice model after 12 weeks external treatment. Results : In vitro study results showed the reduction in the expression of filaggrin, SPT, and COX-2. In vivo study results demonstrated the significant reduction in clinical skin severity score, IgE, IL-4, IL-5, IL-6 expression level. Conclusions : These results showed Samhwangsaejaegami extract can be a promising candidate for anti-atopic dermatitis treatment.

Dietary Effect of Silk Protein on Ceramide Synthesis and the Expression of Ceramide Metabolic Enzymes in the Epidermis of NC/Nga Mice (실크단백질의 식이 공급이 아토피 피부염 동물 모델 NC/Nga Mice 피부의 세라마이드 함량 및 관련인자 발현에 미치는 영향)

  • Park, Kyung-Ho;Choi, Young-Sim;Kim, Hyun-Ae;Lee, Kwang-Gill;Yeo, Joo-Hong;Jung, Do-Hyun;Kim, Sung-Han;Cho, Yun-Hi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.554-562
    • /
    • 2007
  • Ceramide rich intercellular lipid lamellae are thought to be particularly important in maintaining the structural integrity of epidermal barrier. Ceramide is synthesized de novo by serine palmitoyltransferase (SPT) phospholipid intermediates, serine and palmitic acid persist within the stratum corneum. The ceramide which is synthesized is degraded with fatty acid and sphingosine by degradative enzyme ceramidase. The depletion of ceramide in stratum corneum was reported in the atopic dermatitis. As an effort to search for the dietary source for improving the level of ceramide in epidermis, the dietary effects of various-typed silk protein were compared. Seventy male NC/Nga mice, an animal model of atopic dermatitis, were divided into seven groups: group CA as an atopic control with control diet, group S: 1% crude sericin diet, group F: 1% crude fibroin diet, group PS : peptide pattern of sericin(Mw 5000), group PF: peptide pattern of fibroin (Mw 1500), group AS: manufactured the same as amino acid profile of sericin and group AF: manufactured the same as amino acid profile of fibroin. Ten male BALB/c mice were served as group C (control group) control diet. All mice were fed on diet and water ad libitum for 10 weeks. Dry skin condition was established in group CA as ceramide content was decreased. Despite a marked decrease of mRNA and prorein expression of SPT, enzyme do novo synthesis, ceramide content of group S was dramatically increased by inhibiting the mRNA and protein expression of degradative enzyme ceramidase. However, dietary supplementation of crude silk fibroin protein (group F) and in other groups that were supplemented with either amino acid or peptide type of sericin or fibroin did not increase the level of ceramide. Together, our data demonstrate that dietary supplementation of crude sericin is more effective at improving ceramide level in epidemis of NC/Nga mice.

Beneficial Effect of Curcumin on Epidermal Permeability Barrier Function in Hairless Rat (무모쥐에서 자외선에 의한 피부 장벽 손상에 미치는 커큐민의 보호 효과)

  • Jeon, Hee-Young;Kim, Jeong-Kee;Kim, Wan-Gi;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.686-690
    • /
    • 2008
  • Recent research has shown that curcumin has beneficial effects in a variety of skin diseases, including scleroderma, psoriasis, and skin cancer. In this study, we assessed the effects of curcumin on epidermal permeability barrier function in vivo and in vitro. In order to evaluate the effects of curcumin on epidermal permeability barrier function in vivo, hairless rats were exposed to UVB irradiation, and curcumin was administered orally at a dosage of 150 mg/kg per day for 8 weeks. Transepidermal water loss (TEWL) and epidermal thickness were measured at the end of the experiment. The expression of filaggrin, a marker of keratinocyte differentiation, and serine palmitoyltransferase (SPT), a marker of the formation of the stratum corneum lipid barrier, in human HaCat keratinocytes were analyzed. The in vivo results showed that an 8 week administration of curcumin markedly prevented the UVB-induced increase in TEWL. The UV-induced increase in epidermal thickness was also reduced significantly by curcumin treatment. The in vitro results demonstrated the concentration-dependent effects of curcumin on the expression of both filaggrin and SPT in HaCat cells, reflecting the notion that curcumin can induce epidermal keratinocyte differentiation and can improve the recovery of skin barrier functions. These results show that curcumin is a promising candidate for the improvement of epidermal permeability barrier function.

Effect of Oral Administration of Lactobacillus plantarum HY7714 on Epidermal Hydration in Ultraviolet B-Irradiated Hairless Mice

  • Ra, Jehyeon;Lee, Dong Eun;Kim, Sung Hwan;Jeong, Ji-Woong;Ku, Hyung Keun;Kim, Tae-Youl;Choi, Il-Dong;Jeung, Woonhee;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1736-1743
    • /
    • 2014
  • In this study, we evaluated the effect of Lactobacillus plantarum HY7714 on skin hydration in human dermal fibroblasts and in hairless mice. In Hs68 cells, L. plantarum HY7714 not only increased the serine palmitoyltransferase (SPT) mRNA level, but also decreased the ceramidase mRNA level. In order to confirm the hydrating effects of L. plantarum HY7714 in vivo, we orally administered vehicle or L. plantarum HY7714 at a dose of $1{\times}10^9CFU/day$ to hairless mice for 8 weeks. In hairless mice, L. plantarum HY7714 decreased UVB-induced epidermal thickness. In addition, we found that L. plantarum HY7714 administration suppressed the increase in transepidermal water loss and decrease in skin hydration, which reflects barrier function fluctuations following UV irradiation. In particular, L. plantarum HY7714 administration increased the ceramide level compared with that in the UVB group. In the experiment on SPT and ceramidase mRNA expressions, L. plantarum HY7714 administration improved the reduction in SPT mRNA levels and suppressed the increase in ceramidase mRNA levels caused by UVB in the hairless mice skins. Collectively, these results suggest that L. plantarum HY7714 can be a potential candidate for preserving skin hydration levels against UV irradiation.

Acid sphingomyelinase inhibition alleviates muscle damage in gastrocnemius after acute strenuous exercise

  • Lee, Young-Ik;Leem, Yea-Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • [Purpose] Strenuous exercise often induces skeletal muscle damage, which results in impaired performance. Sphingolipid metabolism contributes to various cellular processes, including apoptosis, stress response, and inflammation. However, the relationship between exercise-induced muscle damage and ceramide (a key component of sphingolipid metabolism), is rarely studied. The present study aimed to explore the regulatory role of sphingolipid metabolism in exercise-induced muscle damage. [Methods] Mice were subjected to strenuous exercise by treadmill running with gradual increase in intensity. The blood and gastrocnemius muscles (white and red portion) were collected immediately after and 24 h post exercise. For 3 days, imipramine was intraperitoneally injected 1 h prior to treadmill running. [Results] Interleukin 6 (IL-6) and serum creatine kinase (CK) levels were enhanced immediately after and 24 h post exercise (relative to those of resting), respectively. Acidic sphingomyelinase (A-SMase) protein expression in gastrocnemius muscles was significantly augmented by exercise, unlike, serine palmitoyltransferase-1 (SPT-1) and neutral sphingomyelinase (N-SMase) expressions. Furthermore, imipramine (a selective A-SMase inhibitor) treatment reduced the exercise-induced CK and IL-6 elevations, along with a decrease in cleaved caspase-3 (Cas-3) of gastrocnemius muscles. [Conclusion] We found the crucial role of A-SMase in exercise-induced muscle damage.

The Anti-bacterial Effects and Epidermal Permeability Barrier Function of Red Onion Juice Produced in Jeon-Nam province in Korea (전남 함평산 자색양파 추출물의 항균효과와 피부장벽 보호효과)

  • Youn, Dae-Hwan;Shin, Heon-Tae
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.43-56
    • /
    • 2012
  • Objective : In this study, we assessed the anti-bacterial effects and epidermal permeability barrier function of red onion juice comparing to yellow onion juice and $Houttuynia$ $cordata$ extract $in$ $vitro$. Methods : 3types of red and yellow onion juice were prepared as antibacterial agent candidates with Houttuynia cordata hot water extract using 4 different bacterial strains ($Escherichia$ $coil$, $Salmonella$ $enterica$ $subsp.$ $enterica$, $Staphylococcus$ $epidermidis$, $Staphylococcus$ $aureus$ $subsp$) by colony counting method. The expression of filaggrin, a marker of keratinocyte differentiation, and serine palmitoyl transferase (SPT), a marker of the formation of the stratum corneum lipid barrier, in human HaCat keratinocytes were analyzed using HaCaT cell line. The expression of COX-2 and AP-1 which is a factor of COX-2 transcription were also analyzed by western blotting method. Results : There was detectable anti-bacterial effects on $Staphylococcus$ $epidermidis$, $Staphylococcus$ $aureus$ $subsp$ among 1%, 5%, 10% extracts of yellow and red onion.(81%-100%) The bacteriocidal effects were not shown on $Escherichia$ $coil$, $Salmonella$ $enterica$ $subsp.$ $enterica$ among $Houttuynia$ $cordata$, yellow onion and red onion extracts. The in vitro results showed the concentration-dependent effects on the expression of both filaggrin and SPT in HaCat cells among 0.01%, 0.05%, 0.1%, 0.5% extracts in Houttuynia cordata and red onion, reflecting the notion that $Houttuynia$ $cordata$ and red onion can induce epidermal keratinocyte differentiation and improve the recovery of skin barrier functions. The concentration-dependent effects also have been shown on the expression of both COX-2 and AP-1 among 0.01%, 0.05%, 0.1%, 0.5% extracts in $Houttuynia$ $cordata$ and red onion, while slight effect in yellow onion. Conclusion : Red onion juice could be a potential candidate enhanser for the skin care and cosmetology.

Comparative effect of dietary borage oil and safflower oil on anti-proliferation and ceramide metabolism in the epidermis of essential fatty acid deficient guinea pigs (필수지방산 결핍이 유도된 기니피그에서 보라지유와 홍화유 섭취의 표피 과증식 억제 및 세라마이드 대사에 미치는 효과 비교)

  • Lee, Se Ryung;Cho, Yunhi
    • Journal of Nutrition and Health
    • /
    • v.48 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • Purpose: Borage oil (BO) and safflower oil (SO) are efficacious in reversing epidermal hyperproliferation, which is caused by the disruption of epidermal barrier. In this study, we compared the antiproliferative effect of dietary BO and SO. Altered metabolism of ceramide (Cer), the major lipid of epidermal barrier, was further determined by measurement of epidermal levels of individual Cer, glucosylceramide (GlcCer), and sphingomyelin (SM) species, and protein expression of Cer metabolizing enzymes. Methods: Epidermal hyperproliferation was induced in guinea pigs by a hydrogenated coconut diet (HCO) for 8 weeks. Subsequently, animals were fed diets of either BO (group HCO + BO) or SO (group HCO + SO) for 2 weeks. As controls, animals were fed BO (group BO) or HCO (group HCO) diets for 10 weeks. Results: Epidermal hyperproliferation was reversed in groups HCO + BO (67.6% of group HCO) and HCO + SO (84.5% of group HCO). Epidermal levels of Cer1/2, GlcCer-A/B, and ${\beta}$-glucocerebrosidase (GCase), an enzyme of GlcCer hydrolysis for Cer generation, were higher in group HCO + BO than in group HCO, and increased to levels similar to those of group BO. In addition, epidermal levels of SM1, serine palmitoyltransferase (SPT), and acidic sphingomyelinase (aSMase), enzymes of de novo Cer synthesis and SM hydrolysis for Cer generation, but not of Cer3-7, were higher in group HCO + BO than in group HCO. Despite an increase of SPT and aSMase in group HCO + SO to levels higher than in group HCO, epidermal levels of Cer1-7, GlcCer-A/B, and GCase were similar in these two groups. Notably, acidic ceramidase, an enzyme of Cer degradation, was highly expressed in group HCO + SO. Epidermal levels of GlcCer-C/D and SM-2/3 did not differ among groups. Conclusion: Dietary BO was more prominent for reversing epidermal hyperproliferation by enhancing Cer metabolism with increased levels of Cer1/2, GlcCer-A/B, and SM1 species, and of GCase proteins.