• Title/Summary/Keyword: serially correlated residuals

Search Result 5, Processing Time 0.017 seconds

A Test for Autocorrelation in Dynamic Panel Data Models

  • Jung, Ho-Sung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.167-173
    • /
    • 2005
  • This paper presents an autocorrelation test that is applicable to dynamic panel data models with serially correlated errors. The residual-based GMM t-test is a significance test that is applied after estimating a dynamic model by using the instrumental variable(IV) method and is directly applicable to any other consistently estimated residuals. Monte Carlo simulations show that the t-test has considerably more power than the $m_2$ test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).

  • PDF

A TEST FOR AUTOCORRELATION IN DYNAMIC PANEL DATA MODELS

  • Jung, Ho-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.4
    • /
    • pp.367-375
    • /
    • 2005
  • This paper presents an autocorrelation test that is applicable to dynamic panel data models with serially correlated errors. The residual-based GMM t-test is a significance test that is applied after estimating a dynamic model by using the instrumental variable (IV) method and is directly applicable to any other consistently estimated residuals. Monte Carlo simulations show that the t-test has considerably more power than the $m_2$ test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).

CUSUM of Squares Chart for the Detection of Variance Change in the Process

  • Lee, Jeong-Hyeong;Cho, Sin-Sup;Kim, Jae-Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.126-142
    • /
    • 1998
  • Traditional statistical process control(SPC) assumes that consective observations from a process are independent. In industrial practice, however, observations are ofter serially correlated. A common a, pp.oach to building control charts for autocorrelatd data is to a, pp.y classical SPC to the residuals from a time series model fitted. Unfortunately, one cannot completely escape the effects of autocorrelation by using charts based on residuals of time series model. For the detection of variance change in the process we propose a CUSUM of squares control chart which does not require the model identification. The proposed CUSUM of squares chart and the conventional control charts are compared by a Monte Carlo simulation. It is shown that the CUSUM of squares chart is more effective in the presence of dependency in the processes.

  • PDF

A Modified Diffusion Model Considering Autocorrelated Disturbances: Applications on CT Scanners and FPD TVs (자기상관 오차항을 고려한 수정된 확산모형: CT-스캐너와 FPD TV에의 응용)

  • Cha, Kyoung Cheon;Kim, Sang-Hoon
    • Asia Marketing Journal
    • /
    • v.11 no.1
    • /
    • pp.29-38
    • /
    • 2009
  • Estimating the Bass diffusion model often creates a time-interval bias, which leads the OLS approach to overestimate sales at early stages and underestimate sales after the peak. Further, a specification error from omitted variables might raise serial correlations among residuals when marketing actions are not incorporated into the diffusion model. Autocorrelated disturbances may yield unbiased but inefficient estimation, and therefore invalid inference results. This phenomenon warrants a modified approach to estimating the Bass diffusion model. In this paper, the authors propose a modified Bass diffusion model handling autocorrelated disturbances. To validate the new approach, authors applied the method on two different data-sets: CT Scanners in the U.S, and FPD TV sales in Korea. The results showed improved model fit and the validity of the proposed model.

  • PDF

A study on estimating piecewise linear trend model using the simple moving average of differenced time series (차분한 시계열의 단순이동평균을 이용하여 조각별 선형 추세 모형을 추정하는 방법에 대한 연구)

  • Okyoung Na
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.6
    • /
    • pp.573-589
    • /
    • 2023
  • In a piecewise linear trend model, the change points coincide with the mean change points of the first differenced time series. Therefore, by detecting the mean change points of the first differenced time series, one can estimate the change points of the piecewise linear trend model. In this paper, based on this fact, a method is proposed for detecting change points of the piecewise linear trend model using the simple moving average of the first differenced time series rather than estimates of the slope or residuals. Our Monte Carlo simulation experiments show that the proposed method performs well in estimating the number of change points not only when the error terms in the piecewise linear trend model are independent but also when they are serially correlated.