• Title/Summary/Keyword: sequential leaching

Search Result 50, Processing Time 0.021 seconds

Stabilization of Heavy Metals-contaminated Soils Around the Abandoned Mine area Using Phosphate (인산염을 이용한 휴.폐광산 주변 중금속 오염토양의 안정화처리에 관한 연구)

  • Lee, Eun-Gi;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.100-106
    • /
    • 2007
  • The objective of this study was to evaluate the efficiency of $(NH_4)_2HPO_4$, $Na_2HPO_4{\cdot}12H_2O$, $CaHPO_4{\cdot}2H_2O$, $Ca(H_2PO_4)_2{\cdot}H_2O$ and $H_3PO_4$ for the stabilization of soils contaminated with multi-metals containing Pb, Cd and As. The application rate of stabilizers to soils was determined based on $PO_4/Pb_{total}$ molar ratio of 0.5, 1, 2, 4. The results of Korea Standard Test and TCLP (EPA Method 1311) showed the reduction of metal leachabilities below the regulatory limits for Pb and Cd when $H_3PO_4$ and $Ca(H_2PO_4)_2{\cdot}H_2O$ were applied. However, stabilization efficiency for Cd was low and in case of As leaching concentration increased rather. It is considered that $PO_4$ reacted effectively $Pb^{2+}$ due to leaching Pb under low pH condition created by adding $H_3PO_4$. Accordingly Pb was stabilized by dissolution and precipitation of hydroxypyromorphite. From the change of metals fraction using sequential extraction procedure when $H_3PO_4$ applied as a stabilizer, we confirmed that residual fraction increased more than 60% and this result was accorded with XRD analysis that detected only hydroxypyromorphite peak in $H_3PO_4$.

Stabilization of Heavy Metals in Contaminated Marine Sediment using Bentonite (벤토나이트에 의한 해양오염퇴적물 내 중금속 안정화 특성)

  • Shin, Woo-Seok;Na, Kyu-Ri;Kim, Young-Kee
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2014
  • In this study, stabilization treatment of heavy metals such as Ni, Cu, Pb, and Zn in contaminated marine sediment was achieved using bentonite. Stabilization experiment was accomplished by wet-curing with bentonite for 150 days. From the sequential extraction results of heavy metals, it was observed that the easily extractable fraction (exchangeable, carbonate, and oxides forms) of Ni, Cu, Pb, and Zn in a treated sediment decreased to 8.5%, 5.6%, 19.2%, and 28.2%, respectively, compared with untreated sediment. Moreover, the TCLP(Toxicity Characteristic Leaching Procedure) results evaluating efficiency of extraction reduction of heavy metals showed that extraction of heavy metals reduced drastically to 95.7%, 96.8%, 99.2%, 85.9% for Ni, Cu, Pb, and Zn by stabilization when compared to untreated sediment. From these results, we can confirm that bentonite as a capping material exhibits good stabilization of heavy metals in contaminated marine sediment.

Stabilization of Metals-contaminated Farmland Soil using Limestone and Steel Refining Slag

  • Lim, Jeong-Muk;You, Youngnam;Kamala-Kannan, Seralathan;Oh, Sae-Gang;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • The metals contamination of farmland soil nearby abandoned metal mine was serious problem in Korea. Stabilization of contaminated soil was reported using various stabilizers. Application of limestone and steel refining slag was reported as effective stabilizers in the stabilization of metals. The batch studies confirmed that the mixture of limestone and steel refining slag was suitable for stabilization of metals in contaminated soil. The limestone and steel refining slag mixture (2 : 1 and 3 : 2) were used in column studies and it was confirmed that the stabilizers effectively stabilized heavy metals in contaminated soil. The pH of the soil was increased with the addition of stabilizers. Total leached concentration of metals from the column study was reduced 44, 17, and 93% in comparison to the control at arsenic, cadmium and copper, respectively. The sequential extraction studies showed that the exchangeable fraction was changed into carbonate bound fraction (Cd and Cu) and Fe-Mn oxide bound fraction (As). Based on the results we confirmed that 2:1 ratio of limestone and steel refining slag effectively stabilizes the heavy metals. The mixed treatment of lime stone with steel refining slag would be an effective and feasible method for controlling metals leaching in contaminated soil.

Solid-Phase Speciation of Copper in Mine Wastes

  • Jeong, Jae-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.209-218
    • /
    • 2003
  • Ecosystems in the Keweenaw Peninsula region of Lake Superior, USA, were disturbed by over 500 million tons of copper-rich mine tailings during the period 1850-1968. Metals leaching from these mine residues have had dramatic effects on the ecosystems. Vast acreages of exposed tailings that are over 100 years old remain unvegetated because of the combination of metal toxicity, absence of nutrients, and temperature and water stress. Therefore, it is important to characterize and fractionate solid copper phases for assessing labile forms of copper in soils and sediments contaminated by the mining wastes. X-ray diffraction analyses indicate that calcite, quartz, hematite, orthoclase, and sanidine minerals are present as major minerals, whereas cuprite,tenorite, malachite, and chalcopyrite might be present as copper minerals in the mining wastes. Sequential extraction technique revealed that carbonate and oxide fractions were the largest pools of copper (ca. 50-80%) in lakeshore and wetland stamp sands whereas the organic matter fraction was the largest reservoir (ca. 32%) in the lake sediments. The concentrations of iron and copper were inversely correlated in the oxide fraction suggesting that copper may occur as a surface coating on iron oxides. As particle size and water contents decrease, the percent of the copper bound to the labile carbonate fraction increases.

A Study on Bio-solids Applicability as Soil Stabilizer (Bio-solids의 토양 안정화제 활용 가능성에 대한 연구)

  • Yang, Joo-Kyung;Kang, Seon-Hong;Lee, Chun-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • Recycling of industrial products as the stabilizers can be proper handling of industrial products and has positive side in terms of recycling of wastes. In this study, the final aims were to evaluate the usability as stabilizer of Bio-solids which was generated from contaminated soil with heavy metals after primary process and to compare the treatment efficiency with slag being currently applied in many existing sites. Soluble and exchangeable forms have closely related to pollution of groundwater and plant growth and they can be used to determine the effect of the stabilization efficiency. Slag and Bio-solids were tested to investigate the capacity of stabilizing arsenic. Slag treatment process 4 (PS-ball 5%) showed higher leachate concentration rather to 0.84% compared to treatment 1 (blank) based on an average of 0.63%. The other hand treatment 4 (Bio-solids 5%) showed the lowest soluble and exchangeable forms to 0.57% when Bio-solids was applied to stabilize arsenic. Thus, the leaching of arsenic will be more reduced if the Bio-solids are used as stabilizer in stead of slag which is being currently used in many fields.

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling

  • Nguyen, Huyen T.T.;Pham, Huy K.;Nguyen, Vu A.;Mai, Tung T.;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.

Application of Waste Resources for the Stabilization of Heavy Metals (Pb, Cu) in Firing Range Soils (폐자원을 이용한 사격장 토양내 중금속(Pb, Cu) 안정화 처리)

  • Lee, Keun-Young;Moon, Deok-Hyun;Kim, Kyoung-Woong;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Moon, Kyoung-Ran;Choi, Su-Bin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • In this study, a heavy metal stabilization treatment using waste resource stabilizing agents was utilized on army firing range soil contaminated with Pb and Cu. Both calcined oyster shells (COS; 5% w/w) and waste cow bone (WCB; 3% w/w) were applied for a wet-curing duration of 28 days. Following the stabilization treatment, the process efficiency was evaluated by various extraction methods for Pb and Cu. Neutral and weak acid extraction methods, such as water soluble extraction and SPLP, did not show positive results for heavy metal stabilization with very low leachability. On the other hand, TCLP and 0.1 N HCl extraction showed that the stabilizing agents significantly reduced the amount of the heavy metals leached from the soil, which strongly supports that the treatment efficiency is positively evaluated in acidic leaching conditions. Specifically, in the 0.1 N HCl extraction, the reduction efficiencies of Pb and Cu leaching were 99.9% and 83.9%, respectively. From the sequential extraction results, a difference between Pb and Cu stabilization was observed, which supports that Pb stabilization is more effective due to the formation of insoluble Pb complexes. This study demonstrates that the application of waste resources for the stabilization of heavy metals is feasible.

Bioleaching of Heavy Metals from Shooting Range Soil Using a Sulfur-Oxidizing Bacteria Acidithiobacillus thiooxidans (황산화균 Acidithiobacillus thiooxidans를 이용한 사격장 토양 내 중금속 용출)

  • Han, Hyeop-Jo;Lee, Jong-Un;Ko, Myoung-Soo;Choi, Nag-Choul;Kwon, Young-Ho;Kim, Byeong-Kyu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.457-469
    • /
    • 2009
  • Applicability of bioleaching techniques using a sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans, for remediation of shooting range soil contaminated with toxic heavy metals was investigated. The effects of sulfur concentration, the amount of bacterial inoculum and operation temperature on the efficiency of heavy metal solubilization were examined as well. As sulfur concentration and the amount of bacterial inoculum increased, the solubilization efficiency slightly increased; however, significant decrease of heavy metal extraction was observed with no addition of sulfur or bacterial inoculum. Bacteria solubilized the higher amount of heavy metals at $26^{\circ}C$ than $4^{\circ}C$. Lead showed the highest removal amount from the contaminated soil but the lowest removal efficiency when compared with Zn, Cu and Cr. It was likely due to formation of insoluble $PbSO_{4(s)}$ as precipitate or colloidal suspension. Sequential extraction of the microbially treated soil revealed that the proportion of readily extractable phases of Zn, Cu and Cr increased by bacterial leaching, and thus additional treatment or optimization of operation conditions such as leaching time were required for safe reuse of the soil. Bioleaching appeared to be a useful strategy for remediation of shooting range soil contaminated with heavy metals, and various operating conditions including concentration of sulfur input, inoculum volume of bacteria, and operation temperature exerted significant influence on bioleaching efficiency.

Application of Red Mud and Oyster Shell for the Stabilization of Heavy Metals (Pb, Zn and Cu) in Marine Contaminated Sediment (적니와 굴패각을 이용한 해양오염퇴적물 내 중금속(Pb, Zn and Cu) 안정화 처리)

  • Shin, Woo-Seok;Kang, Ku;Park, Seong-Jik;Um, Byung-Hwan;Kim, Young-Kee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.751-756
    • /
    • 2012
  • In this study, a heavy-metal stabilization treatment using stabilizing agents derived from waste resources was utilized on Incheon North Port range sediment contaminated with Pb, Zn, and Cu. Both calcined red mud (5%, 10%, and 15% w/w) and oyster shell (5%, 10%, and 15% w/w) were applied for a wet-curing duration of 15 days. From the sequential extraction results, the oxide and organic fraction of heavy metals (Pb, Zn, and Cu) were observed strongly in the contaminated sediment. However, the fraction of heavy metal in the stabilized sediment was higher than the organic and residual fraction, in comparison to the contaminated sediment. Moreover, the leaching of heavy metals was reduced in the stabilized sediment, compared with the contaminated sediment. From these results, red mud and oyster shell were shown to be potential stabilizers of heavy metals in contaminated sediment.

Pilot-test for the Restoratoin of Contaminated Farmland using Industrial By-products (산업부산물을 이용한 오염농경지 복원을 위한 현장실증시험 적용)

  • Yu, Chan;Baek, Seung-Hwan;Yun, Sung-Wook;Park, Jin-Chul;Lee, Jung-Hoon;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.914-919
    • /
    • 2008
  • This present was carried out to evaluate the adaptability of stabilization method which was used industrial byproducts as the stabilization agency in the abandoned mine site. In order to investigate stabilization effect on As-contaminated soils treated by industrial by-products, batch tests and column tests were carried out with As-contaminated soils collected from farmland around the abandoned mine site. ZVI(zero valent iron) and SRS(steel refining slag) was shown a good treatment effect. After the column test, sequential extraction test and simple bioavailability extraction test(SBET) were carried out to analysis of the soil, and scanning electron micrograph(SEM) analysis was carried out to compare the morphology and structure of ZVI and SRS before and after reacting with arsenic in the soil. As a result, ZVI and SRS were shown 93%, 62% reduction of As concentration respectively by comparison with untreated soils. Therefore, if ZVI and SRS are used as treatment materials in As-contaminated soils, it is expected that the As leaching from soils is reduced effectively.

  • PDF