• Title/Summary/Keyword: sequential inoculation

Search Result 10, Processing Time 0.033 seconds

Varying Inocula Permutations (Aspergillus oryzae and Bacillus amyloliquefaciens) affect Enzyme Activities and Metabolite Levels in Koji

  • Gil, Hye Jeong;Lee, Sunmin;Singh, Digar;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1971-1981
    • /
    • 2018
  • In this study, we investigated the altered enzymatic activities and metabolite profiles of koji fermented using varying permutations of Aspergillus oryzae and/or Bacillus amyloliquefaciens. Notably, the protease and ${\beta}$-glucosidase activities were manifold increased in co-inoculated (CO) koji samples (co-inoculation of A. oryzae and B. amyloliquefaciens). Furthermore, gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling indicates that levels of amino acids, organic acids, sugars, sugar alcohols, fatty acids, nucleosides, and vitamins were distinctly higher in CO, SA (sequential inoculation of A. oryzae, followed by B. amyloliquefaciens), and SB (sequential inoculation of B. amyloliquefaciens, followed by A. oryzae). The multivariate principal component analysis (PCA) plot based on GC-MS datasets indicated a clustered pattern for MA and MB (koji samples inoculated either with A. oryzae or B. amyloliquefaciens) across PC2 (20.0%). In contrast, the CO, SA, and SB metabolite profiles displayed segregated patterns across PLS1 (22.2%) and PLS2 (21.1%) in the partial least-square discriminant analysis (PLS-DA) model. Intriguingly, the observed disparity in the levels of primary metabolites was engendered largely by higher relative levels of sugars and sugar alcohols in MA, SA, and CO koji samples, which was commensurate with the relative amylase activities in respective samples. Collectively, the present study emphasizes the utility of integrated biochemical and metabolomic approaches for achieving the optimal permutation of fermentative inocula for industrial koji preparation.

Effect of Skin Sooty and Decay Disease Control on ‘Niitaka’ Pear Fruit for Storage (신고배 저장중 과피얼룩 및 부패병에 대한 방제 효과)

  • Lee, Jung-Sup;Choi, Jin-Ho;Park, Jong-Han;Kim, Dae-Hyun;Han, Kyung-Sook;Han, You-Kyoung
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.230-235
    • /
    • 2009
  • Postharvest skin sooty dapple and decay disease of pear fruit often originates at small stain symptoms that occurred during harvest and handling. Experiments were conducted to characterize the effect of timing of application of disease control materials, and to evaluate sequential postharvest applications of fungicides or fungicides and bio-control agents. Fungicides and bio-control agents were increasingly less effective when the period between harvest and application was prolonged. Thiabendazole (TBZ) applied to fruit without artificial wounding or inoculation effectively reduced skin sooty and decay disease when applied within 3 weeks or 6 weeks in 2 years of study. TBZ, Fludioxonil and pyrimethanil were effective in controlling skin sooty and decay disease at artificial wounds inoculated with Cladosporium tenuissimum up to 14 days after inoculation. Application of TBZ at harvest followed 3 weeks later by application of Fludioxonil was superior to application of TBZ at harvest alone. Two bacterial biocontrol agents reduced skin sooty and decay disease at pear wounds inoculated with C. tenuissimum up to 14 days after inoculation with C. tenuissimum, but were ineffective when applied at 28 days after inoculation. Of possible sequential arrangements of fungicide and bio-control treatments, application of the most effective material promptly after harvest generally resulted in the highest level of disease control.

Histopathological changes in lymphoid organs of chickens inoculated with IBDV (SBV92) (IBDV (SH/92)의 인공감염에 의한 닭 면역장기의 병리조직학적 연구)

  • 엄성심;김범석;임채웅;임병무;이호일;정동석
    • Korean Journal of Veterinary Service
    • /
    • v.22 no.3
    • /
    • pp.247-255
    • /
    • 1999
  • Sequential morphologic changes in the lymphoid organs were examined after ocular and cloacal inoculation in 3weekold chicks with a highly virulent strain (SH/92) of infectious bursal disease virus (IBDV). The infected chickens were sacrificed at 6, 12, 24, 48, 72, and 96 hrs post inoculation (Pl), and thymus, harderian gland, ceacal tonsil, and spleen were observed. Histologically, the significant lesions were characterized by lymphocyte depletion and the earliest detectable changes were evident at 12 hrs Pl. In thymic cortex, lymphoid depletion with apoptosis and prominent "tingible body macrophages" were observed. As the infection advanced, the lesions showed more severe changes. Dying cells were characterized either by capping of nuclear chromatin (apoptosis) or by cytoplasmic swelling (necrosis). In situ staining for apoptosis, some lymphoid cells revealed typical positive reaction, even the stainability was variable depend on every lymphoid organs. These results suggest that IBBV (SH/92) cause severe damage both primary and secondary lymphoid organs, and both T and B lymphocytes. Also the lymphoid depletion of these organs is caused by necrosis and apoptosis induced by IBDV.d by IBDV.

  • PDF

The fate of spargana inoculated into the cat brain and sequential chan'germ of anti-sparganum IgG antibody levels in the cerebrospinal fluid (고양이 뇌에 주입된 스파르가눔의 운명과 숙주 뇌척수액 IgG 항체가의 경시적 변화)

  • Wang, Kyu-Chang;Huh, Sun;Hong, Sung-Tae;Chai, Jong-Yil;Choi, Kil-Soo;Lee, Soon-Hyung
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • To establish an animal model of intracranial sparganosis, the fate and behavior of the experimentally inoculated spargana were observed. A total of 102 scolices of spargana were injected into 22 cat brains, and the cats were sacrificed at 2 weeks, 1 month, 3 months and 6 months after the inoculation. Neurosparganosis was established in 77% of the cats. Of 43 recovered worms,19 (44%) were located in the subdural or subarachnoid space,16 (37%) in the brain Parenchyme, and 2 (5%) in the lateral ventricle. One was detected at the diploic space of the skull and 5 were outside the cranial cavity. All but one were alive, and had grown tails. They were distributed in the brain parenchyme randomly. There was no place which they could not invade. No adult was found in the intestine. Cerebrospinal fluid (CSF) was collected before inoculation, 1 week, 2 weeks, 1 month, 3 months and 6 months after inoculation. The level of anti-sparganum IgG antibody in CSF measured by ELISA began to increase above the criteria of positivity 1 month after inoculation. Three months after inocula- tion, the values markedly increased. The present findings reveal that intracranial inoculation of spargana into the brains of cats would be a good animal model of experimental neurosparganosis.

  • PDF

Protection Against Salmonella Typhimurium, Salmonella Gallinarum, and Salmonella Enteritidis Infection in Layer Chickens Conferred by a Live Attenuated Salmonella Typhimurium Strain

  • Lee, John Hwa
    • IMMUNE NETWORK
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 2015
  • In the present study, we investigated the protection conferred by a live attenuated Salmonella enterica serovar Typhimurium (ST) strain against Salmonella Typhimurium, Salmonella Gallinarum (SG), and Salmonella Enteritidis (SE) infection in layer chickens. Birds were orally primed with the attenuated ST strain at 7 days of age and then boosted at 4 weeks post prime immunization (PPI). Sequential monitoring of plasma IgG and mucosal secretory IgA (sIgA) levels revealed that inoculation with ST induced a significant antibody response to antigens against ST, SE, and SG. Moreover, significant lymphoproliferative responses to the 3 Salmonella serovars were observed in the immunized group. We also investigated protection against virulent ST, SE, and SG strain challenge. Upon virulent SG challenge, the immunized group showed significantly reduced mortality compared to the non-immunized group. The reduced persistence of the virulent ST and SE challenge strains in the liver, spleen, and cecal tissues of the immunized group suggests that immunization with the attenuated ST strain may not only protect against ST infection but can also confer cross protection against SE and SG infection.

Sequential hepatic ultrastructural changes and apoptosis in rabbits experimentally infected with Korean strain of rabbit hemorrhagic disease virus (RHDVa) (국내 분리 토끼출혈병 바이러스(RHDVa)를 감염시킨 토끼 간장에서의 경시적인 초미세구조 변화와 apoptosis)

  • Park, Jung-Won;Chun, Ji-Eun;Bak, Eun-Jung;Kim, Han;Lee, Myeong-Heon;Hwang, Eui-Kyung;Kim, Jae-Hoon;Lee, Chung-Bok;Woo, Gye-Hyeong
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • In this study, to understand the pathogenesis of new rabbit hemorrhagic disease virus (RHDVa) serotype, we carried out to administrate RHDVa to rabbits, and to examine sequential electron microscopic changes and relationship between pathogenesis and apoptosis. TUNEL-positive cells began to be observed from 24 hours after inoculation (HAI) and the number of positive cells was slightly increased with the course of time. Whereas marked increase of positive cells was seen in the liver from the rabbits died acutely. Typical viral particles with cup-like projections and a diameter of 30~40 nm were detected in homogenized liver samples and tissues at 36 and 48, and 48 HAI, respectively. Ultrastructurally, glycogen deposition was observed from the first stage of hepatocellular degeneration by RHDVa infection and then, swelling and disruption of cristae of mitochondria by viral particles, swelling of smooth endoplasmic reticulum, vacuoles and vesicles were detected. Condensation, margination and fragmentation of chromatin were observed in degenerative hepatocytes at 36 and 48 HAI, indicating apoptotic bodies. These data offer that hepatocytic apoptosis by RHDV infection could be closely related with mitochondrial impairment in the hepatocytes.

Effects of Endomycorrhizal Glomus Inoculation on Drought Resistance and Physiological Changes of Lespedeza cyrtobotrya Seedlings Exposed to Water Stress (Glomus 내생균근균(內生菌根菌) 접종(接種)이 수분(水分) 스트레스에 노출(露出)된 참싸리의 건조저항성(乾燥抵抗性) 및 생리적(生理的) 변화(變化)에 미치는 영향(影響))

  • Kim, Hyo-Jin;Lee, Kyung-Joon;Han, Sim-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.53-62
    • /
    • 2002
  • The objectives of this study were to understand the tolerance mechanism of woody plants to water stress and tolerance changes in relation to mycorrhizal formation. Lespedeza cyrtobotrya Miq. commonly used for erosion control in slopes were raised from seeds and transplanted to 120 plastic pots. Sixty pots received the top soil of a Fraxinus americana forest, while remaining 60 pots received the autoclaved top soil. The forest soil contained 1,200 spores per 100g of arbuscular endomycorrhizal fungus, mostly Glomus sp. The plants were raised outside with regular supply of water and mineral nutrients. Two kinds of water deficit treatment and a control were started at the middle of July : cyclic water deficit treatment with 3 cycles of sequential water stress at the point of xylem water potential of about -0.6, -0.6, and -1.7 MPa and recovery, and non-cyclic water deficit treatment with single water stress at about -1.5 MPa. The non-stressed plants received plenty of water throughout the period. In late August the plants were harvested for measurements of dry weight, N, P, carbohydrate contents, net photosynthesis and superoxide dismutase(SOD) activities. Both cyclic and non-cyclic water deficit treatments reduced dry weight by 60% and 40%, respectively, and reduced nitrogen absorption, while increased SOD activities. Water-stressed plants also showed increased carbohydrate contents in the leaves and lowered stomatal conductance. Mycorrhizal inoculation resulted in an average of 40% infection of roots and 2-3 times increase in P absorption in water-stressed as well as non-stressed plants. Mycorrhizal formation also increased shoot-root ratio. The results that SOD activities of water-stressed plants with mycorrhizal infection were significantly lower than those of non-mycorrhizal plants suggest the possibility of improvement of water-stressed condition by mycorrhizal formation. It was concluded that endomycorrhizal formation increased tolerance of Lespedeza cyrtobotrya seedlings to water stress.

Sequential pathologic changes and viral distribution in rabbits experimentally infected with new Korean strain of rabbit hemorrhagic disease virus (RHDVa) (새로운 국내 분리 토끼출혈병바이러스(RHDVa)를 감염시킨 토끼에서의 경시적인 병리학적 변화와 조직 내 바이러스 항원 분포)

  • Park, Jung-Won;Chun, Ji-Eun;Yang, Dong-Kun;Bak, Eun-Jung;Kim, Han;Lee, Myeong-Heon;Hwang, Eui-Kyung;Lee, Chung-Bok;Woo, Gye-Hyeong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.125-131
    • /
    • 2012
  • Rabbit hemorrhagic disease is a highly acute and fatal viral disease caused by rabbit hemorrhagic disease virus (RHDV). Since first outbreak in Korea 1987, RHDV has been continually affected in the country, but the pattern of outbreak seem to be changed. In this study, to understand the pathogenesis of the new RHDVa serotype, we therefore carried out to inoculate RHDVa to rabbits, and to examine the sequential histopathologic changes and viral distribution. Macroscopically, various sized dark red or white spots or appearance were observed in the liver, lung, kidney uterus and ureter. In euhanized rabbits, significant pathologic findings such as infiltration of heterophils and mononuclear cells were observed at 24 hours after inoculation (HAI), and these were sequentially extended periportal to centrilobular area. However, in dead rabbits, severe hepatic degeneration and/or necrosis with relatively weak inflammatory responses were observed. RHDV antigens began to detect in liver, spleen, and lung from 12 HAI by PCR. Immunohistochemically, RHDV positive cells were seen in only liver from 24 HAI, and the degree of immunogen reactivity was stronger in dead rabbits than in euthanized ones. In conclusion, RHDVa caused the subacute or chronic infection accompanying low mortality and moderate to severe inflammatory reaction in rabbits, suggesting the possibility that RHD could become endemic.

Development of Eimeriu tenezla in MDEK cell culture with a note on enhancing effeet of preincubation with chicken spleen cells (MDBK 세포 배양에서 Eimeria tenella 발육 상황 및 닭 비장세포에 의한 발육 항진 효과)

  • 채종일;이순형
    • Parasites, Hosts and Diseases
    • /
    • v.27 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • Eimeria tenella, an intracellular protozoan parasite infecting the epithelial cells of the ceca of chickens, causes severe diarrhea and bleeding that can lead its host to death. It is of interest that 2. tenezla first penetrate into the mucosal intraepithelial Iymphocytes (IEL) before they parasitize crypt or villous epithelial cells. This in vitro study was undertaken to know whether the penetration of E. tenella into such a lymphoid cell is a beneficial step for the parasite survival and development. Three sequential experiments were performed. First, the in vitro established bovine kidney cell line, MDBK cells, were evaluated for use as host cells for E. tenella, through morphological observation. Second, the degree of parasite development and multiplication in MDBK cells was quantitatively assayed using radioisotope labelled uracil ($^3H-uracil$) . Third, the E. tenella sporozoites viability was assayed after preincubation of them with thicken spleen cells. E. tenella oocysts obtained from the ceca of the infected chickens were used for the source of the sporozoites. Spleen cells (I) obtained from normal chickens (FP strain) were preincubated with the sporozoites (T) at the E:T ratio of 100:1, 50:1 or 25:1 for 4 or 12 hours, and then the mixture was inoculated into the MDBK cell monolayer. Morphologically the infected MDBK cells revealed active schisogonic cycle of E. tenella in 3~4 days, which was characterized by the appearance of trophozoites, and immature and mature schizonts containing merogoites. The 3H-uracil uptake by E. tenella increased gradually in the MDBK cells, which made a plateau after 48~60 hours, and decreased thereafter. The uptake amount of $^3H-uracil$ depended not only upon the inoculum sixte of the sporozoites but also on the degree of time delay (preincubation; sporozoites only) from excystation to inoculation into MDBK cells. The 3H-uracil uptake became lower as the preincubation time was prolonged. In comparison, after preincubation of sporozoites with spleen cells for 4 or 12 hours, the 3H-uracil uptake was significantly increased compared with that of control group. From the results, it was inferred that, although the penetration of E. tenella sporozoites into the lymphoid cells such as IEL is not an essential step, it should be at least a beneficial one for the survival and development of sporozoites in the chicken intestine.

  • PDF

Disease Reaction of a Japonica Rice, Keumo3, and Detection of a Linked DNA Marker to Leaf Blast Resistance ("금오3호"의 벼 잎도열병 저항성 특성 및 저항성 연관 마커 탐색)

  • Lee, Jong-Hee;Kwak, Do-Yeon;Pakr, Dong-Soo;Roh, Jae-Hwan;Kang, Jong-Rae;Kim, Choon-Song;Jeon, Myeong-Gi;Yeo, Un-Sang;Yi, Gihwan;Shin, Mun-Sik;Oh, Byeong-Geun;Hwang, Hung-Goo
    • Korean Journal of Breeding Science
    • /
    • v.40 no.4
    • /
    • pp.408-413
    • /
    • 2008
  • Rice blast resistance is considered one of the most important traits in rice breeding and the disease, caused by Magnaporthe grisea Barr, has brought significant crop losses annually. Moreover, breakdown of resistance normally occurs in two to five years after cultivar release, thus a more durable resistance is needed for better control of this disease. We developed a new variety, Keumo3, which showed strong resistance to leaf blast. It was tested in 2003 to 2007 at fourteen blast nursery sites covering entire rice-growing regions of South Korea. It showed resistance reactions in 12 regions and moderate in 2 regions without showing susceptible reactions. Durability test by sequential planting method indicated that this variety had better resistance. Results showed that Keumo3 was incompatible against 19 blast isolates with the exception of KI101 by artificial inoculation. To understand the genetic control of blast resistance in rice cultivar Keumo3 and facilitate its utilization, recombinant inbred lines (RIL) consisting of 290 F5 lines derived from Akidagomachi/Keumo3 were analyzed and genotyped with Pizt InDel marker zt56591. The recombination value between the marker allele of zt56591 and bioassay data of blast nursery test was 1.1%. These results indicated that MAS can be applied in selecting breeding populations for blast resistance using zt56591 as DNA marker.