• Title/Summary/Keyword: sequencing batch reactor

Search Result 224, Processing Time 0.026 seconds

Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR) (생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성)

  • Jeong, Seong-Jin;Seo, Gyu-Tae;Lee, Taek-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Long term hydrogen production was investigated in an anaerobic sequencing batch reactor (ASBR) using mixed microflora. Glucose (about 8,250 mg/L) was used as a substrate for the ASBR operation under the condition of pH 5.5 and $37^{\circ}C$ with mixing at 150 rpm. The experiment was carried out over a period of 160 days. Hydrogen yield was 0.8mol $H_2/mol$ glucose with F/M ratio 2 at initial operation period. The hydrogen yield reached to maximum 2.6 mol $H_2/mol$ glucose at 80th day operation. However decreased hydrogen yield was observed after 80 days operation and eventually no hydrogen yield. Although well-known hydrogen producer Clostridium sp. was detected in the reactor by PCR-DGGE analysis, changed reactor operation was the major reason of the decreased hydrogen production, such as low F/M ratio of 0.5 and high propionic acid concentration 2,130 mg/L. Consequently the long period operation resulted in MLSS accumulation and then low F/M ration stimulating propionic acid formation which consumes hydrogen produced in the reactor.

Effect of Temperature on Treatment of Nitrogen and Phosphorus of Pig Wastewater in Bench Scale Reactor (실험실 수준의 반응조 온도가 양돈폐수중 질소, 인의 처리에 미치는 영향)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.1
    • /
    • pp.86-92
    • /
    • 1995
  • This study was performed to evaluate the effect of temperature on operating parameters for reactor in pig wastewater treatment using sequencing batch reactor method which is one of the biological treatment methods. Study was accomplished by experimental apparatus of bench scale, and the degradation rate coefficient and temperature correction factor were derived. The followings are the conclusions that were derived from this study. 1. In the characteristics of pig wastewater, concentrations of TKN and T-P were very high as 590 mg/l and 40 mg/l, respectively. 2. Removal efficiency of BOD and $COD_{Mn}$ as organic compound indicators were the highest mark as 97% at 25$\circ$C. 3. When temperature was incresed from 10$\circ$C to 25$\circ$C, removal efficiencies of TKN and T-P were proportionally increased. Especially, the former was greatly effected by temperature of reactor. 4. In experiment of bench scale, the degradation rate coefficients were increased as temperature increased, but decreased at the temperature range of 25~35$\circ$C. Temperature adjustment coefficients for $COD_{Mn}$, BOD, TKN and T-P were 1.1460, 1.1356, 1.1140 and 1.0565, respectively.

  • PDF

Effect of Media in Advanced Treatment of Sewage Using Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기를 사용한 하수의 고도처리에서 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.470-479
    • /
    • 2016
  • In the advanced treatment of sewage using the submerged membrane-coupled sequencing batch reactor (SMSBR) with media, the effect of media on the filtration performance and removal efficiency were investigated. Dosages of the media in the SMSBR were 10% based on working volume of reactor. As a control system, SMSBR without media and PAC, SMSBR with PAC (10 g/L) only, and SMSBR with media and PAC were also operated. The experimental results showed that there was no big difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media and PAC. But transmembrane pressure (TMP) of SMSBR with media increased slowly during the operation time, while that of SMSBR without media increased rapidly. Using SMSBR with media, it was possible to operate without the membrane cleaning during the 91 days. Using SMSBR with media only, after 80 days the average removal efficiencies of COD, T-N, and T-P were 95.0, 69.3%, and 51.4%, respectively.

A Study on the Effect of Bioceramics as Biochemosorption Material in Sequencing Batch Reactor (연속회분식 반응조에서 생화학흡착제로서 바이오세라믹의 영향에 관한 연구)

  • Lee, Seunghwan;Islam, M.S.;Kang, Meea
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • Sequencing Batch Reactor (SBR) is well adopted for community wastewater treatment for its simplicity, performance and various advantageous treatment options. SBR is now drawing attention for its process modification such as coupled with membrane bioreactor, reverse osmosis or applying different media to achieve high removal efficiency. This study focused on the improved efficiency of carbon, nitrogen and phosphorous removal by applying zeolite materials called bioceramics to the SBR. Two laboratory-scale SBR units were operated in the same operating conditions - one with bioceramics called Bioceramic SBR (BCSBR) and the other without bioceramics used as control. Routine monitoring of COD, TP, $NH_3-N$, $NO_3-N$ was performed throughout this study. COD removal was about 80% to 100% and phosphorous removal was about 60% in the process whereas $NH_3-N$ removal efficiency was found to be 99.9% in the BCSBR unit. Addition of bioceramics also improved sludge characteristics such as sludge dewaterability, specific gravity and particle size. BCSBR can withstand high ammonia shock loading leading to the better treatment capacity of high ammonia containing wastewater. The cause of improved removal efficiencies within the biological reactor could be attributed to the biochemosorption mechanisms of bioceramics. Absorption/adsorption or desorption capacity of bioceramics was tested through laboratory experiments.

Application of Anaerobic Sequencing Batch Reactor to Mesophilic Digestion of Municipal Sewage Sludge (중온 혐기성 연속회분식 공정에 의한 도시하수슬러지의 소화가능성 평가)

  • Hur, Joon-Moo;Chang, Duk;Chung, Tai-Hak;Son, Bo-Soon;Park, Jong-An
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.9-19
    • /
    • 1998
  • Laboratory experiments were carried out to investigate the performance of anaerobic sequencing batch reactor(ASBR) for digestion of a municipal sludge. Each cycle of the ASBR comprised feeding, two-or three-day reaction, one-day thickening, and withdrawal. The reactors were operated at an HRT of 10days and 5days with an equivalent organic loading rate of 0.8-1.54 gVS/l/d, 1.81-3.56 gVS/l/d at 35$\circ$C, respectively. Solids accumulation was remarkable in the ASBR during start-up period, and directly affected by settleable solids in the feed sludge. Floatation thickening occured in the ASBRs, and Solids profiles at the end of thickening step dramatically changed at solid-liquid interface. Slight difference in solids concentrations was observed within thickened sludge bed. Efficiencies through floatation thickening were comparable to that of additional thickening of the completely mixed control reactor. Average solids concentrations in the ASBRs were 2.2-2.6 times higher than that in the control throughout the total operation period. The dehydrogenase activity had a strong correlation with the solids concentration. Organics removals based on clarified effluent of the ASBRs were consistently above 86%. Remarkable increase in equivalent gas production of 27-52% was observed at the ASBRs compared with the control though the control and ASBRs showed similiar effluent quality. Thus, digestion of a municipal sludge was possible using the ASBR in spite of high concentration of solids in the sludge.

  • PDF

The Effect of Media on the Removal Efficiency and Filtration Performance in the Submerged Membrane-Coupled Sequencing Batch Reactor with Media (담체가 첨가된 침지형 막결합 연속회분식 반응기에서 제거효율과 여과성능에 대한 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.450-460
    • /
    • 2012
  • In the submerged membrane-coupled sequencing batch reactor (MSBR) with sponge type media, the effect of media on the removal efficiency and filtration performance were investigated. Dosages of the media in the MSBR were set of 5%, 10%, and 20% based on working volume of reactor. As a control system, the MSBR without media was also operated. The experimental results showed that there was also no difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media. But TMP (transmembrane pressure) of the MSBR with media increased slowly during the operation time, while that of the MSBR without media increased rapidly at the initial operation. This result was thought that the collisions between flat membrane and moving media gave shear forces which decreased the cake layer on the surface of flat type membrane. Consequently, this study showed that filtration performance of the MSBR with media was greatly enhanced compared with that of the MSBR without media. The MSBR with media suggested in this study can be a good candidate for the wastewater treatment.

Effects of arsenite and variation of microbial community on continuous bio-hydrogen production from molasses using a sequence batch reactor (SBR)

  • William, Dennis Sambai;Lee, Pul-eip;Lee, Tae-jin
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.370-376
    • /
    • 2015
  • This study investigated the effects of various arsenite concentrations on bio-hydrogen production from molasses using a sequence batch reactor (SBR) operated in a series of three batch cycles. In the first batch cycle, hydrogen production was stimulated at arsenite concentrations lower than 2.0 mg/L, while inhibition occurred at arsenite concentration higher than 2.0 mg/L compared to the control. Hydrogen production decreased substantially during the second batch cycle, while no hydrogen was produced during the third batch cycle at all tested concentrations. The toxic density increased with respect to the increase in arsenite concentrations (6.0 > 1.6 > 1.0 > 0.5 mg/L) and operation cycles (third cycle > second cycle > first cycle). The presence of microorganisms such as Clostridium sp. MSTE9, Uncultured Dysgonomonas sp. clone MEC-4, Pseudomonas parafulva FS04, and Uncultured bacterium clone 584CL3e9 resulted in active stimulation of hydrogen production, however, it was unlikely that Enterobacter sp. sed221 was not related to hydrogen production. The tolerance of arsenite in hydrogen producing microorganisms decreased with the increase in induction time, which resulted in severing the inhibition of continuous hydrogen production.

A Study on High Strength Nitrogen Wastewater Treatment and Sludge Granulation Characteristics in a Pilot-scale Air-lift Sequencing Batch Reactor (파일럿 규모의 공기 유동 연속회분반응기에서 고농도 질소제거 및 슬러지 그래뉼화 특성 연구)

  • Lee, Soochul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • Selective nitrification and granulation have been carried out in a pilot scale air-lift sequencing batch reactor (SBR) for stable and economical nitrogen removal from wastewater. The SBR showed about 100% nitrification efficiency up to 1.0 kg ${NH_4}^+-N/m^3{\cdot}d$, about 90% efficiency at 1.0-2.0 kg ${NH_4}^+-N/m^3{\cdot}d$, and it was less than 90% when the load was higher than 2.0 kg ${NH_4}^+-N/m^3{\cdot}d$. Nitrite accumulation was induced by selective inhibition of nitrite oxidizing bacteria by free ammonia inhibition and dissolved oxygen limitation. For the purpose, high nitrite ratio (> 0.95) was obtained by keeping the pH higher than 8.0 and dissolved oxygen lower than 1.5 mg/L. In addition, sludge granulation was achieved by keeping reactor settling time to 5 minutes to wash out poor settling sludge and to promote the growth of granulation sludge. The operation accelerated sludge granulation and the sludge volume index (SVI) decreased and stably maintained to less than 75 in 60 days.