• 제목/요약/키워드: separation ratio

Search Result 1,111, Processing Time 0.03 seconds

합류부 하상고 불일치에 의한 두부침식 및 분리구역 특성분석 (An Analysis for the Characteristics of Headward Erosion and Separation Zone due to Bed Discordance at Confluence)

  • 최흥식;모선재;이삼희
    • 한국수자원학회논문집
    • /
    • 제48권11호
    • /
    • pp.879-889
    • /
    • 2015
  • 본 연구는 지류의 합류각, 지류와 본류의 유량비, 준설 깊이비의 변화에 따른 지류에서의 두부침식 양상과 합류부 이동상 하도에서의 분리구역의 특성을 분석하였다. 분리구역은 지류가 합류되어진 직후 단면에서의 유속이 0(영)인 구간으로 정의하였다. 준설 깊이에 따른 두부침식이 발생치 않은 범위를 제시하였다. 합류각, 유량비, 준설 깊이비 증가에 따른 두부침식 깊이비 및 천급점의 이동거리비는 전반적으로 증가하였으며, 천급점의 이동거리비의 관계식을 제시하였다. 이동상 하도에서의 유량비와 합류각 증가에 따른 분리구역의 길이비 및 폭비는 고정상 하도에서와 같은 양상으로 증가하였다. 준설 깊이비 증가에 따른 분리구역의 길이비는 감소하고 폭비은 증가하여 형상지수는 크게 증가하여 통수단면의 감소로 배수위 현상이 기대된다. 고정상 하도와 이동상하도에서의 합류각, 유량비, 준설 깊이비에 따른 형상지수 관계식을 제안하였다.

DETECTION OF WIDE PLANETARY SYSTEM WITH MICROLENSING

  • 류윤현;박명구;장헌영;이기원
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.108.2-108.2
    • /
    • 2012
  • Recent results from microlensing surveys show that a free-floating planet or a wide-separation planet is more numerous than a main-sequence star in the Galaxy. Moreover, the detection efficiency of the planets will be improved in next-generation experiments with a high survey monitoring frequency. However, microlensing events produced by both planets appear similar light curves with a short duration timescale, thus it is difficult to distinguish them. In this paper, we investigated the detectable separation range of a wide-separation planet as the planet bound to its host star. We construct the fractional deviation maps using the magnifications of the planetary lensing and the single-lensing by planet itself for various parameters such as a mass ratio, separation, and source radius. As a result, we found that the pattern of the fractional deviation is related to the ratio of source radius to caustic size, and the ratio satisfying the detection criterion (i.e., ${\geq}5%$ in the fractional deviation) varies with a separation. Hence, we derived a fitting formula as the function of a mass ratio and a source radius to reflect the variation in the calculations of the detectable separation range of a wide-separation planet as the planet bound to its host star. In addition, we estimated the condition that a wide-separation planet can be detected as a single-lensing event under the finite source effect. We found that such a case is possible provided that the source radius is smaller than ~2.5 times of Einstein ring radius of a planet, regardless of a separation or a mass ratio.

  • PDF

인접 배치된 스테레오 무지향성 마이크로폰 환경에서 양이간 강도차를 활용한 음원 분리 기법 (Sound Source Separation Using Interaural Intensity Difference in Closely Spaced Stereo Omnidirectional Microphones)

  • 전찬준;정석희;김홍국
    • 전자공학회논문지
    • /
    • 제50권12호
    • /
    • pp.191-196
    • /
    • 2013
  • 본 논문에서는 실제 환경에서 인접 배치된 무지향성 스테레오 마이크로폰을 활용하여 녹음받은 스테레오 오디오 신호를 양이간 강도차에 기반하여 원하는 방위각에 존재하는 음원을 추출하는 음원 분리 기법을 제안한다. 먼저, 최소 분산 무손실 응답빔형성기를 활용하여 스테레오 오디오 신호의 양이간 강도차를 극대화하고, 강도차 기반의 음원 분리 기법을 적용한다. 제안된 기법의 성능을 검증하기 위하여 stereo audio source separation evaluation campaign (SASSEC)에서 제공하는 객관적 성능평가 지표인 source-to-distortion ratio (SDR), source-to-interference ratio (SIR), sources-to-artifacts ratio (SAR)을 측정하였다. 측정한 결과, 음원 분리 기법에 빔형성기까지 적용한 결과가 높은 성능을 보인 것으로 평가되었다.

견피브로인/Poly(vinyl alcohol) 브렌드 필름의 형태학적 구조 (Morphology of Silk Fibroin/Poly(vinyl alcohol) Blend Film)

  • 엄인철;박영환
    • 한국잠사곤충학회지
    • /
    • 제40권2호
    • /
    • pp.169-175
    • /
    • 1998
  • The morphology of silk fibroin/poly(vinyl alcohol)(PVA)blend films was investigated using optical microscopy and confocal laser scanning microscopy. The effects of blend ratio and molecular weight of silk fibroin and PVA on phase separation were studied. Macro-phase separation occurred for the silk fibroin-rich/poor region whereas micro-phase separation took place for the dispersed/continuous phase, In spite of differences in molecular weight and blend ratio, it is observed that the dispersed phase and continuous one are composed of silk fibroin and PVA component, respectively. As the molecular weight of silk fibroin and silk fibroin content in blend ratio are decreased, the compatibility of blend is increased due to the reduction of micro-phase separation.

  • PDF

Regeneration of solid phase filter by chemical cleaning

  • Byung-Dae Lee
    • 한국응용과학기술학회지
    • /
    • 제41권1호
    • /
    • pp.19-26
    • /
    • 2024
  • Recently, separation membranes have been applied to fields such as water supply, sewage treatment, gray water reuse, and air pollution control. Chemical cleaning technology is attracting attention among the methods of reusing these expensive separation membranes. It was found that the separation membrane could be regenerated using chemical cleaning. Specifically, it was found that the use time of the separation membranes regenerated by chemical cleaning was sustainable for more than 1,700 hours. Additionally, it was found that the flux recovery ratio after chemical cleaning was maintained at least 60%. In addition, the flux recovery ratio of HYDREX 4710, an organic membrane cleaner, and 4703, an inorganic membrane cleaner, was 76% and 62%, respectively, showing the highest flux recovery ratio among the chemicals used. Considering that the target raw water of this study is biological secondary treatment water, it was suggested that chemical cleaning could be actively used to regenerate separation membranes in future water treatment.

Factorial Experiment for Drum-type Secondary Separating Part of Self-propelled Pepper Harvester

  • Nam, Ju-Seok;Kang, Young-Sun;Kim, Su-Bin;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.242-250
    • /
    • 2017
  • Purpose: This study was conducted to determine the appropriate operating conditions through a factorial experiment for the secondary separating part of the self-propelled pepper harvester. Methods: An experimental setup that simulates the secondary separating part of the self-propelled pepper harvester was organized. Test samples were classified into three types according to the number of peppers on a stem, and 12 sets were prepared for each type. Among the operating conditions of the secondary separating part, the rotational speed of drum B (four levels), radial clearance between drums and cylindrical teeth (three levels), and speed ratio between the three drums (two levels) were set as the test factors, and tests were repeated three times for different levels of each factor. The appropriate operating conditions were determined by analyzing the separation ratio and damage ratio of the peppers collected through the secondary separating part. Results: The test factors changed the overall separation ratio and overall damage ratio in similar trends. In other words, the conditions that caused high overall separation ratios also exhibited high overall damage ratios. Owing to the high overall damage ratio in the condition with the highest overall separation ratio, the operating conditions should be selected considering both ratios. Conclusions: When the condition with more than 60% of overall separation ratio and less than 15% of overall damage ratio was considered as the appropriate operating condition, 70 rpm of the rotational speed of drum B, 5 mm of the radial clearance between drums and cylindrical teeth, and 7:3:5 for the speed ratio of the three drums A, B, and C should be applied for the secondary separating part used in this study. Supplementary studies will be required in the future to find optimal operating conditions through the actual field test under further divided test factors.

수평 T형 증발관내 2상류의 유량분배 및 압력강하 특성 (Characteristics of T-phase flow distribution and pressure drop in a horizontal T-type evaporator tube)

  • 박종훈;조금남;조홍기
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.658-668
    • /
    • 1999
  • The objective of the present study is to investigate the effect of experimental parameters on the hydrodynamic characteristics in a horizontal tee-type evaporator using R-22. The experimental apparatus consisted of an unheated tee-type test section, a liquid-vapor separator, a preheated, mass flow meters, a plate heat exchanger, pump, and other measurement devices. The experimental parameters were mass flux(500 and 600kg/$m^2$s), inlet quality(0.1~0.3) and separation ratio(0.3~0.7). Absolute pressure at the inlet of the test section was 0.652 MPa. The branch-to-inlet inner diameter ratio was 0.61. Pressure gradient at the branch section was larger than that at the run section at the same separation ratio. Pressure drop per unit length increased at the run section and decreased at the branch section as the separation ratio increased. Pressure drop predicted by the separated flow model agreed with experimental data within -35 to +16%. Generally, predicted values showed similar trend with the data. Mass flow ratio of vapor refrigerant was affected by the inlet quality more than the mass flux.

  • PDF

미세 유체장치 내에서 Poly(Ethylene Glycol)과 Dextran 용액의 상 형성 특성 연구 (Phase-Separation Properties of Poly(Ethylene Glycol) had Dextran Solutions In Microfluidic Device)

  • 최주형;장우진;이상우
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.244-249
    • /
    • 2007
  • Fluidic conditions for the separation of phases were surveyed in a microfluidic aqueous two-phase extraction system. The infusion ratio between polyethylene glycol (PEG) and dextran solution defines the concentrations of each polymer in micro-channel, which determine the phase-separation. The appropriate ratio between PEG (M.W. 8000, 10%, w/v) and dextran T500 (M.W. 500000, 5%, w/v) in order to perform the separation of phases of both polymers was observed as changing the mixed ratio of both polymers. Based on the fluidic conditions, stable two-phase solutions were obtained within 4% to 8% and 3% to 1% of PEG and dextran, respectively. In addition, the characteristics of the two-phase were discussed. The separation technique studied in the paper can be applied for the implementation of a lab-on-a chip which can detect various biological entities such cells, bacterium, and virus in an integrated manner using built in a biosensor inside the chip.

Triboelectrostatic Separation System for Separation of PVC and PS Materials Using Fluidized Bed Tribocharger

  • Lee, Jae-Keun;Shin, Jin-Hyouk;Hwang, Yoo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1336-1345
    • /
    • 2002
  • A triboelectrostatic separation system using a fluidized bed tribocharger for the removal of PVC material in the mixture of PVC/PS plastics is designed and evaluated as a function of electric field strength, air flow rate, and the mixing ratio of two-component mixed plastics. It consists of a fluidized-bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PS particles can be imparted negative and positive surface charges, respectively, due to the difference in the work function values of plastics suspended in the fluidized-bed tribocharger, and can be separated by passing them through an external electric field. Experimental results show that separation efficiency is strongly dependent on the electric Deld strength and particle mixing ratio. In the optimum conditions of 150 Ipm air flow rate and 2.6 kV/cm electric field strength a highly concentrated PVC (99.1%) can be recovered with a yield of more than 99.2% from the mixture of PVC and PS materials for a single stage of processing.

보텍스 튜브를 이용한 비압축성 유체의 에너지 분리 (Energy Separation of Incompressible Fluid Using Vortex Tube)

  • 유갑종;최병철;이병화
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.108-116
    • /
    • 2001
  • The vortex tube is a simple device which separates fluid stream into a cold stream and a hot stream without any chemical reaction. The process of energy separation in the vortex tube has caused a great deal of interest. Although many studies on energy separation in the vortex tube using air as the working fluid have been made so far, few experimental studies treated energy separation for incompressible fluid. So, an experimental study for the energy separation in the vortex tube using the water which is essentially an incompressible fluid is presented. When working fluid is the water, the best geometric values of nozzle area ratio and number of nozzle holes are 0.155, 6 respectively. These geometric values are showed by the similar values which are presented by compressible fluid as working fluid. But hot side mass fraction of which maximum temperature drop is happened are different from compressible fluid.