• Title/Summary/Keyword: separation and purification

Search Result 352, Processing Time 0.031 seconds

Application of extraction chromatographic techniques for separation and purification of emerging radiometals 44/47Sc and 64/67Cu

  • Vyas, Chirag K.;Park, Jeong Hoon;Yang, Seung Dae
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.84-95
    • /
    • 2016
  • Considerably increasing interest in using the theranostic isotopes/ isotope pairs of radiometals like $^{44/47}Sc$ and $^{64/67}Cu$ for diagnosis and/or therapeutic applications in the nuclear medicine procedures necessitates its reliable production and supply. Separation and purification of no-carrier-added (NCA) isotopes from macro quantitates of the irradiated target matrix along with other impurities is a cardinal procedure amongst several other steps involved in its production. Multitudinous methods including but not limited to liquid-liquid (solvent) extraction, extraction chromatography (EXC), ion exchange, electrodeposition and sublimation are routinely applied either solitarily or in combination for the separation and purification of radioisotopes depending on their production routes, radioisotope of interest and impurities involved. However, application of EXC though has shown promises towards the numerous separation techniques have not received much attention as far as its application prospects in the field of nuclear medicine are concerned. Advances in the recent past for application of the EXC resins in separation and purification of the several medically important radioisotopes at ultra-high purity have shown promising behavior with respect to their operation simplicity, acidic and radiolytic stability, separation efficiencies and speedy procedures with the enhanced and excellent extraction abilities. In this mini review we will be talking about the recent developments in the application and the use of EXC techniques for the separation and purification of $^{44/47}Sc$ and $^{64/67}Cu$ for medical applications. Furthermore, we will also discuss the scientific and practical aspects of EXC in the view of separation of the NCA trace amount of radionuclides.

A Study on the Technology Evaluation of Development of Separation and Purification Techniques of Flavonoid in Citrus (감귤 플라보노이드 성분의 추출 및 정제방법 개발의 기술가치평가)

  • Ko, Seong-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.243-248
    • /
    • 2014
  • This study was carried out to evaluate the economic value of development of separation and purification techniques of flavonoid in citrus using IRR, NPV. The separation and purification techniques of flavonoid of citrus was developed by national institute of horticultural and herbal science in Korea rural development administration. This technology could be used to improve efficiency and practicality of cultivation of citrus. The research results show that the technological value of separation and purification techniques of flavonoid of citrus was evaluated 3,155(scenario 1)~6,518(scenario 2) million won. IRR was 28.3%~61.2%, which was greater than discount rate(11.9%). NPV is 5,541~18,773 million won. Therefore, the economic validity of development of separation and purification techniques of flavonoid of citrus is identified by the results of technology evaluation.

High Purification Characteristics of Quartz with Physical Separation Method (물리적 정제방법에 의한 규석의 고순도화 연구)

  • Hyun Jong-Yeong;Jeong Soo-Bok;Chae Young-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.1-5
    • /
    • 2006
  • In this study, we have investigated the purification characteristics of quartz which size was 0.1mm to 0.3 mm by using physical separation techniques. The A and B samples which contained 95,864 mg/kg and 4,568 mg/kg of impurities were reduced upto 126 mg/kg and 174 mg/kg of impurities, respectively. So, removal ratios of the total impurities were about 97.85 wt.% and 96.19 wt.%, individually. At that time, the yields of the purified quartz (over 99.98 wt.% $SiO_2$) were 79.05 wt.% and 75.43 wt.% by using purification process including magnetic separation, gravity separation and scrubbing process. The most benefit in purification process of both different raw materials for iron element can be achieved by magnetic separation. Also, gravity separation is extremely successful for reducing aluminium element.

A Study on the Utilization of Yun Chun Andalusite as a Raw Material of High Alumina Refractories (II) -On the Concentration and Purification- (고 알루미나질 내화물 원료로서 연천산 홍주석의 이용에 관한 연구(II) -홍주석의 선광 및 정제-)

  • Ahn, Young-Pil;Choi, Long
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 1974
  • 1. Stage crushing by jaw crusher, steel mortar, and ball mill in turn has shown an inclination to increase the distribution of andalusite in coarse particles as well as to increase that of micas in fine particles. 2. Water elutriation was effective for the removal of muscovite and magnetic separation was effective for that of Mg-Fe micas such as biotte and chlorite. The process of concentration and that of purification are diagramatized respectively as follows: Concentration; Raw andalusite${\lightarrow}$Crushing${\lightarrow}$Screening${\lightarrow}$Water elutriation${\lightarrow}$Magnetic separation Purification; Concentrated andalusite${\lightarrow}$Calcination${\lightarrow}$Ball milling${\lightarrow}$Screening${\lightarrow}$Water elutriation${\lightarrow}$Magnetic separation${\lightarrow}$Acid washing.

  • PDF

Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals (바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF

Separation and Purification of 2,6-dimethylnaphthalene in the Light Cycle Oil(II) - Separation of Individual Isomers of Dimethylnaphthalene - (접촉분해경유에 함유된 2,6-dimethylnaphthalene의 분리, 정제(II) - Dimethylnaphthalene 이성체 성분간 분리 -)

  • Kim, Su Jin;Kim, Sang Chai;Kawasaki, Junjiro
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.869-876
    • /
    • 1996
  • Purification of 2,6-dimethylnaphthalene(2,6-DMNA) from the distillate containing a mixture of dimethylnaphthalene(DMNA) isomers of very high concentration was investigated by crystallization-recrystallization combination as a after-treatment for separation and purification of 2,6-DMNA in the light cycle oil(LCO). The separation of individual isomers of DMNA was studied by crystallization with the distillate as a feed. 2,6-DMNA, 2,7-dimethylnaphthalene(2,7-DMNA) and 2,3-dimethylnaphthalene(2,3-DMNA) were concentrated to crystal, and it was fould that separation between a group of 2,6-, 2,7-, 2,3-DMNA isomers and a group of the other DMNA isomers was possible. However, it was not possible to separate 2,6-, 2,7- and 2,3-DMNA from one another. To select the most suitable recrystallization solvent for purification of 2,6-DMNA, several conventional solvents, which have been employed commercially as recrystallization solvents for high purity performance, were tested, through measurement of solubility of 2,6- and 2,7-DMNA. The solvent used were hexane, iso-propyl ether, ethyl acetate and ethanol. From the solubility results for 2,6- and 2,7-DMNA, ethanol seemed to be the most suitable solvent for purification of 2,6-DMNA. Finally, with crystal recovered by crystallization as a feed and ethanol as a solvent, recrystallization experiments were conducted under various conditions. Purification of 2,6-DMNA was easily done with increasing operating temperature and solvent to feed ratio. These results show that the crystallization-recrystallization combination is an effective one for separation of individual isomers of DMNA.

  • PDF

SEPARATION AND PURIFICATION PROCESS OF DEMO PLANT FOR 10TON PER DAY DME PRODUCTION (일일 10톤 DME 생산 Demo Plant에서의 분리정제 공정)

  • Ra Young Jin;Cho Wonihl;Shin Dong Geun;Lim Gye Gue
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-145
    • /
    • 2005
  • DME (Di-Methyl Ether) is a new clean fuel and an environmental-friendly energy resource, also is recently increasing with an alternative interest because of the industrial use. DME has been shown to have excellent properties as a diesel fuel giving emission level better than ULEV standard. So it has been attracting considerable as an alternative diesel fuel. In this study, we carried out simulation of separation and purification process of demo plant for 101on per day DME production, which cause the effect that is important in productivity, from operation results of pilot plant for 50kg per day DME production. The liquefied stream, which was separated by gas-liquid separator after DME reactor, includes $CO_2$, DME, Methanol and $H_2O$. We established three distillation columns for separation and purification of the stream. $CO_2$ was extracted from the stream by first distillation column, DME was extracted by second column and Methanol was extracted by third column. We investigated and analyzed the effect which the actual operation variables cause in efficiency of process and optimized process, finally we got the DME of purity $100\%$.

  • PDF

A Novel Purification Process for Homoharringtonine from Celphalotaxus koreana

  • Sung, Ju-Li;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.521-524
    • /
    • 2003
  • An effective purification method was developed for producing Homoharringtonine (HHT), to guarantee high purity and yield from Cephalotaxus koreana. This process was a simple and efficient procedure, for the isolation and purification of HHT form the biomass of Cephalotaxus koreana, consisting of extract, adsorbent treatment, precipitation and followed by a chromatography. The extraction, adsorbent treatment and precipitation in pre-purification process allows for rapid and efficient separation of HHT from many compound and dramatically increases the yield and purity of crude HHT for HPLC purification steps compared to alternative processes. This purification processes serves to minimize solvent usage, size, and complexity of the operations for HHT purification.

  • PDF

Paclitaxel : Recovery and Purification in Commercialization Step (Paclitaxel : 산업화 단계에서의 회수 및 정제)

  • Kim Jin-Hyun
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.1-10
    • /
    • 2006
  • The recovery and purification of a paclitaxel from plant cell cultures is essential to commercial process. This review describes a large-scale recovery and purification method for producing paclitaxel, to guarantee high purity and yield from plant cell cultures. Also, the process of separation and purification is optimized in conjunction with a extraction step, pre-purification, purification, and polishing (drying) as an integrated process to meet final product quality requirements such as purity, residual solvents, product morphologies, impurities, bacterial endotoxin, etc. This information is very useful for production and quality control of pharmaceuticals in commercialization step.