• Title/Summary/Keyword: separated column

Search Result 746, Processing Time 0.029 seconds

Characterization of a New Anti-dementia β-secretase Inhibitory Peptide from Arctoscopus japonicus

  • Park, Seul Bit Na;Kim, Sung Rae;Byun, Hee-Guk
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.220-227
    • /
    • 2018
  • Amyloid plaque is a product of aggregation of ${\beta}$-amyloid peptide ($A{\beta}$) and is an important factor in the pathogenesis of Alzheimer's Disease (AD). $A{\beta}$ is a major component of amyloid plaque and vascular deposits in the AD brain. The enzyme ${\beta}$-secretase is required for the production of $A{\beta}$; thus, prevention of the formation of $A{\beta}$ through the inhibition of ${\beta}$-secretase is a major focus in the study of the treatment of AD. In this study, we investigated ${\beta}$-secretase inhibitory activity of an Arctoscopus japonicus peptide. An Alcalase hydrolysate had the highest ${\beta}$-secretase inhibitory activity. A ${\beta}$-secretase inhibitory activity peptide was separated using ion exchange column chromatography (carboxy-methyl: CM, quaternary methyl ammonium: QMA) and reverse phase high performance liquid chromatography (RP-HPLC) on a C18 column. The $IC_{50}$ value of the purified peptide was $248.2{\pm}1.73{\mu}g/mL$. The ${\beta}$-secretase inhibitory peptide was identified as a six amino acid residue of Gly-Pro-Val-Gly-Ala-Pro (MW: 497.27 Da). In cell viability experiments, the final purified fraction, the carboxy-methyl ion exchange column fraction (CM-F1) showed no significant cytotoxic effect in SH-SY5Y cells at concentrations below $100{\mu}g/mL$ in 24 h. The results of this study suggest that peptides separated from Arctoscopus japonicus may be beneficial as ${\beta}$-secretase inhibitor compounds in functional foods.

Development of Conductivity Cell and Suppressor for Capillary Column Ion Chromatography (모세관 컬럼 이온 크로마토그래피를 위한 Conductivity Cell과 Suppressor의 개발)

  • Pyo, Dongjin;Kim, Hohyun
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.89-93
    • /
    • 1999
  • In this study, conductivity cell and suppressor for micro-column ion chromatography were developed to analyze ions in small columns of samples. With a capillary column, the flow rate of the mobile phase is so small (usually $5{\sim}20{\mu}L/min$) that the usual conductivity cell can not be used. Therefore, we developed a new type of conductivity cell and suppressor which have small inner volumes. The conductivity cell was made with two Pt hypodermic needles (i.d. 0.010 mm) which are slightly separated (about $2{\mu}m$), and the suppressor was made of Nafion tubings. When several anions(fluoride, nitrite, nitrate, chlorate) were analyzed using developed conductivity cell and suppressor, a good chromatogram was obtained.

  • PDF

SEPARATION AND PURIFICATION PROCESS OF DEMO PLANT FOR 10TON PER DAY DME PRODUCTION (일일 10톤 DME 생산 Demo Plant에서의 분리정제 공정)

  • Ra Young Jin;Cho Wonihl;Shin Dong Geun;Lim Gye Gue
    • 한국가스학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.141-145
    • /
    • 2005
  • DME (Di-Methyl Ether) is a new clean fuel and an environmental-friendly energy resource, also is recently increasing with an alternative interest because of the industrial use. DME has been shown to have excellent properties as a diesel fuel giving emission level better than ULEV standard. So it has been attracting considerable as an alternative diesel fuel. In this study, we carried out simulation of separation and purification process of demo plant for 101on per day DME production, which cause the effect that is important in productivity, from operation results of pilot plant for 50kg per day DME production. The liquefied stream, which was separated by gas-liquid separator after DME reactor, includes $CO_2$, DME, Methanol and $H_2O$. We established three distillation columns for separation and purification of the stream. $CO_2$ was extracted from the stream by first distillation column, DME was extracted by second column and Methanol was extracted by third column. We investigated and analyzed the effect which the actual operation variables cause in efficiency of process and optimized process, finally we got the DME of purity $100\%$.

  • PDF

Conversion Patterns of Yellow Pigment from Gardenia jasminoides by Staphylococcus epidermidas and Lactobacillus plantarum (Staphylococcus epidermidas와 Lactobacillus plantarum에 의한 치자황색소의 변환양상)

  • Jeong, Hyung-Seok;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1184-1187
    • /
    • 1999
  • The Gardenia jasminoides yellow pigment and converted pigments were completely separated by Amberlite XAD-4 column chromatography. These Pigments were gel filtrated on Sephadex LH-20 column chromatography. The characteristics of absorption spectra of eluate and fractionated pigments were investigated. The pigment converted by Lactobacillus plantarum showed a single blue color with an absorption peak at 588 nm and its molecular size was bigger than that of crocetin. The pigment, converted by Staphylococcus epidermidis, Showed blue-green color, which was composed of yellow color with an absorption peak at 418 nm and blue color at 588 nm. Molecular size of the yellow pigment was smaller than crocetin and that of blue color.

  • PDF

Separation of Lipase Using Reverse Micelles in Spray Column (Spray Column에서 역미셀을 이용한 Lipase의 분리)

  • 한동훈;홍원희
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.83-88
    • /
    • 1993
  • Lipase was separated using reverse mlcelles in a spray column. The 50 mM AOT-Isooctane solution was used as reverse micellar solution for the extraction of lipase (crude containing 25% Protein). Ionic strength was controlled by KCl(0.1M KCl for extraction, 0.5M KCl for back exlractlon). Acetate buffer and phosphate buffer were used for control of pH. The efficiencies of extraction and stripping were 30% and 50%. An increase of circulation did not change the efficiency of extraction in forward extraction. The optimum flow rate was around 0.10ml/sec.

  • PDF

The Separation and Determination of Rare Earth Elements by Ion-Association Chromatography (희토류 원소의 분리 및 정량을 위한 이온회합 크로마토그래피)

  • Lee, Seung Hwa;Lee, Cheol;Jeong, Koo Soon
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.69-75
    • /
    • 1990
  • An ion-association chromatography was applied for the separation and determination of individual rare earth elements (REE) contained in mineral monazite. Prior to the determination, the group separation of REE was achieved by a cation exchange column of Dowex 5OW-X8 resin. The quantitative recovery of REE by the resin column, free from coexisting elements in monazite, was confirmed with radioactive tracers as well as with ICP-MS. Individual REE at ppm level was separated on reversed-phase column ($\mu$-Bondapak $C_{18}$) using gradient elution from 0.05 to 0.3 M $\alpha$-hydroxyisobutyric acid at pH 4.6. The individual REE was detected at 546 nm following post-column reaction with PAR (4-(2-pyridylazo)-resorcinol monosodium salt).

  • PDF

Determination of Nebramycin Factor 2,4,5,5',6 and Kanamycin A in Fermentation Broth of Streptoalloteichus hindustanus ATCC 31218 Mutant Using 2,4-Dinitrofluorobenzene(DNFB) as a Derivatizing Agent by High Performance Liquid Chromatography (HPLC법에 의한 2,4-디니트로플루오로벤젠을 유도체화제로 한 Streptoalloteichus hindustanus ATCC 31218 변이균의 배양액 중 네브라마이신 펙터 2,4,5,5',6, 가나마이신 A 분석)

  • 박영근;박명용;김승철;양호길
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • A procedure for the high-performance liquid chromatographic determination of Nebramycin factors in fermentation broth of Streptoalloteichus hindustanus ATCC 31218 mutant was investigated using pre-column derivatization and LTV detection. The method is based on pre-column derivatization of Nebramycin factors with 2,4-dinitrofluorobenzene(DNFB) in the presence of Tris (hydroxymethyl)aminoethane. The chromatographic separation of derivatives of Nebramycin factors and unknown impurities is achieved using reversed-phase column (NOVA-PAK $C_{18}$, Waters Co.) and AcCN : H$_{2}$O : AcOH (53.0:46.5:0.5) as a mobile phase. The mixture of these derivatives were separated within 35 minutes and the optimum wavelength($\lambda_{max}$ ) of the UV detector was 353 nm. The linearity of response for derivatives of Nebramycin factors is demonstrated for concentrations up to 500 $\mu\textrm{g}$/ml and the relative standard deviation is less than 0.79%. Detection limit was 1.67 ng for the 10 $\mu\textrm{l}$ sample volume employed.

  • PDF

Analysis of Mugwort Oligosaccharides Utilized by Bifidobacteria (Bifidobacteria가 이용한 쑥의 올리고당 분석)

  • Lee, Seon-Hwa;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.28-33
    • /
    • 1996
  • The water extract of mugwort was analyzed to see its growth-promoting activity for bifidobacteria and lactobacilli. The growth of bifidobacteria appeared to be enhanced by carbon source in the water extract of mugwort. Bifidobacterium longum seemed to utilize preferentially monosaccharides and oligosaccharides with 2-5 DP (degree of polymerization). The mugwort oligosaccharides were separated by charcoal-celite column chromatography and purified by Bio-gel $P_2$ column chromatography. HPLC chromatograms of the hydrolyzates of oligosaccharides showed that they were mainly composed of galactose and glucose.

  • PDF

Determination of Protein Amino Acids as the N-TFA N-Butyl Esters by Gas Liquid Chromatography (Gas Liquid Chromatography에 의한 단백질 아미노산의 분석)

  • Woo, Kang-Lyung
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.88-93
    • /
    • 1990
  • For effective separation of the N-TFA n-butyl ester amino acids on the stainless steel column by GLC, dual column of the mixed stationary phases, 3.36% OV-17+3.0% SE-30(column 1) and 1% NPGS +0.5% OV-17+0.5% SE-30(column 2) on chromosorb W HP 100-120 mesh, were used. On the column 1. the nineteen amino acids except histidine were obtained. However, alanine and valine peaks were not separated by this column. On the column 2, the sixteen amino acid peaks showed good separation, but tryptophan. arginine, histidine, and tyrosine peaks were not obtained. Calibration graphs for all amino acids obtained by the plotting the ratios of their peaks hights to that of internal standard versus the micro mole of the amino acids in the range $1.25{\times}10^{-3}{\mu}mol-1.0{\times}10^{-2}{\mu}mole$ showed linearity and passed through the origin.

  • PDF

Studies on the Isolation of Antioxidative Components of Perilla Oil (들기름의 산화방지 성분 분리에 관한 연구)

  • Kim, Choong-Ki;Song, Geun-Seoup;Kwon, Yong-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.690-695
    • /
    • 1994
  • The perilla seed and the germinated perilla seed $(25{\sim}28^{\circ}C$, $2{\sim}3\;days)$ were extracted by n-hexane, and from the extracted oil the antioxidative components were separated, and then the effect of the change in the contents of antioxidative components by germination on the oxidative stability of the perilla oil was studied. The perilla oils were solved acetone and methanol, and kept at $-60^{\circ}C$ overnight and separated into the frozen oil fraction and unfrozen solvent soluble fraction. By comparing the antioxidative stability of the frozen oil fraction the antioxidative components in the perilla oil were found to be methanol soluble. The methanol soluble fraction of perilla oil was applied to silica gel column chromatography and the separated fractions were compared in terms of antioxidative activity. The fraction of n-hexane : ethyl acetate (7 : 3, v/v) showing the highest antioxidative activity was further separated by TLC. The components included in the band $(R_f\;0.71)$ showing the highest antioxidative activity was separated by HPLC. Four peaks were observed on the HPLC chromatogram and the peak areas were changed by germination (perilla seed : peak 1; 46.5%, peak 2; 25.6%, peak 3; 22.6%, germinated perilla seed : peak 1; 43.8%, peak 2; 20.6%, peak 3; 29.8%). The comparative change in the contents of these components was considered to be one factor affecting the antioxidative stability of perilla oil by germination.

  • PDF