• Title/Summary/Keyword: sentinel-2

Search Result 265, Processing Time 0.026 seconds

Urban Subsidence Monitoring in Ulsan City Using GACOS Based Tropospheric Delay Corrected Time-series SBAS-InSAR Technique (GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지)

  • Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin;Lee, Jung-hoon;Song, Juyoung;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1081-1089
    • /
    • 2022
  • This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS).We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

Development of an AI-based Waterside Environment and Suspended Solids Detection Algorithm for the Use of Water Resource Satellite (수자원위성 활용을 위한 AI기반 수변환경 및 부유물 탐지 알고리즘 개발)

  • Jung Ho Im;Kyung Hwa Cho;Seon Young Park;Jae Se Lee;Duk Won Bae;Do Hyuck Kwon;Seok Min Hong;Byeong Cheol Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.4-4
    • /
    • 2023
  • C-band SAR 센서를 탑재한 수자원위성은 한반도 수자원 모니터링을 위해 개발되어 2025년 발사가 계획되어 있으며, 수변환경 및 부유물 탐지 및 다양한 활용이 기대되고 있다. 그 중 수변환경은 수변 생태계 안정성을 유지하는 역할을 담당하여 이에 대한 모니터링은 중요하다. s현장 관측 기반 탐지 방법과 비교하여 위성 원격탐사는 광범위한 지역을 반복적으로 관측하여, 연속적인 수변환경 및 부유물 정보를 제공할 수 있다. 이러한 특성에 기반하여 다양한 다중분광 및 SAR (Synthetic Aperture Radar) 위성 원격탐사 자료를 바탕으로 수변환경 및 부유물의 탐지 연구가 이루어졌다. 특히 단일 영상만을 사용하는 기법에 비해 다중분광 및 SAR 영상을 융합하여 높은 정확도를 보인 바 있다. 초기 연구에서는 임계값 알고리즘 또는 현장관측 기반의 부유물 농도와 위성 자료간의 선형관계를 분석하는 단순한 알고리즘이 주를 이루었으나, 최근에는 RF, CNN 등 보다 복잡하고 다양한 인공지능 알고리즘이 적용되어 높은 정확도로 해당 문제들을 해결하고 있다. 본 연구에서는 수자원위성 활용을 위해 인공지능 기반 수변환경 및 부유물 탐지 알고리즘을 개발하고자 한다. 수자원위성의 대체 자료로 유럽우주국의 Sentinel-1 A/B 위성의 C-band SAR 영상을 이용하였으며, 보조자료로 Sentinel-2 다중분광 영상을 이용하였다. 개발된 알고리즘은 수자원 관리를 위한 환경변화 탐지에 유용한 정보로 활용될 수 있을 것으로 기대된다.

  • PDF

Unveiling the mysteries of flood risk: A machine learning approach to understanding flood-influencing factors for accurate mapping

  • Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.164-164
    • /
    • 2023
  • This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.

  • PDF

Integration of top-down and bottom-up approaches for a complementary high spatial resolution satellite rainfall product in South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.153-153
    • /
    • 2022
  • Large-scale and accurate observations at fine spatial resolution through a means of remote sensing offer an effective tool for capturing rainfall variability over the traditional rain gauges and weather radars. Although satellite rainfall products (SRPs) derived using two major estimation approaches were evaluated worldwide, their practical applications suffered from limitations. In particular, the traditional top-down SRPs (e.g., IMERG), which are based on direct estimation of rain rate from microwave satellite observations, are mainly restricted with their coarse spatial resolution, while applications of the bottom-up approach, which allows backward estimation of rainfall from soil moisture signals, to novel high spatial resolution soil moisture satellite sensors over South Korea are not introduced. Thus, this study aims to evaluate the performances of a state-of-the-art bottom-up SRP (the self-calibrated SM2RAIN model) applied to the C-band SAR Sentinel-1, a statistically downscaled version of the conventional top-down IMERG SRP, and their integration for a targeted high spatial resolution of 0.01° (~ 1-km) over central South Korea, where the differences in climate zones (coastal region vs. mainland region) and vegetation covers (croplands vs. mixed forests) are highlighted. The results indicated that each single SRP can provide plus points in distinct climatic and vegetated conditions, while their drawbacks have existed. Superior performance was obtained by merging these individual SRPs, providing preliminary results on a complementary high spatial resolution SRP over central South Korea. This study results shed light on the further development of integration framework and a complementary high spatial resolution rainfall product from multi-satellite sensors as well as multi-observing systems (integrated gauge-radar-satellite) extending for entire South Korea, toward the demands for urban hydrology and microscale agriculture.

  • PDF

The Significance of Sentinel Node Biopsy in Malignant Melanoma and Squamous Cell Carcinoma of Lower Extremities (하지에 발생한 악성흑색종 및 편평상피세포암에서 소속 림프절 생검의 의미)

  • Kim, Jae-Do;Lee, Gun-Woo;Kwon, Young-Ho;Chung, So-Hak
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.16 no.2
    • /
    • pp.69-73
    • /
    • 2010
  • Purpose: Sentinel lymph node (SLNB) is the first confronted lymph node from primary lesion of tumor through lymphatic drainage, which is important for determining early metastasis and setting guidelines for treatment. We reported significant of sentinel lymph node biopsy in malignant melanoma (MM) and squamous cell carcinoma (SCC) of lower extremities. Materials and Methods: Twenty-five cases of surgically treatment and being possible for follow up more than 1 year among the patients who were diagnosed as MM and SCC in this institution from Sep. 2005 to Jan. 2009, and 10 cases of them were performed SLNB. Average age was 64 years old, and 15 cases of male and 10 cases of female were in this group. Results: 3 years overall survival rate was 100% and 3 years disease-free survival rate was 76%. Metastasis occurred in total 6 patients, 4 cases of inguinal lymph nodes, 1 case of soft tissue around knee, 1 case of left achilles tendon. In 15 cases of not performing SLNB, overall survival rate was 93.3% and disease-free survival rate was 73.3%. In 10 cases of performing SLNB, overall survival rate was 100% and disease-free survival rate was 90%. And only 1 case showed positive finding in the biopsy, and none of the 10 cases showed metastasis in follow-up. Conclusion: SLNB leads simpler and less complications compared to prior elective lymph node dissection, and shows high degree of accuracy. Throughout the SLNB, setting guidelines for treatment by accurate staging is thought to be helpful for increasing the survival rate in the patient with MM and SCC.

Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization (YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석)

  • Yungyo Im;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Youngmin Seo;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.997-1008
    • /
    • 2023
  • Ship detection at sea can be performed in various ways. In particular, satellites can provide wide-area surveillance, and Synthetic Aperture Radar (SAR) imagery can be utilized day and night and in all weather conditions. To propose an efficient ship detection method from SAR images, this study aimed to apply the You Only Look Once Version 5 (YOLOv5) model to Sentinel-1 images and to analyze the difference between individual vs. integrated models and the accuracy characteristics by polarization. YOLOv5s, which has fewer and lighter parameters, and YOLOv5x, which has more parameters but higher accuracy, were used for the performance tests (1) by dividing each polarization into HH, HV, VH, and VV, and (2) by using images from all polarizations. All four experiments showed very similar and high accuracy of 0.977 ≤ AP@0.5 ≤ 0.998. This result suggests that the polarization integration model using lightweight YOLO models can be the most effective in terms of real-time system deployment. 19,582 images were used in this experiment. However, if other SAR images,such as Capella and ICEYE, are included in addition to Sentinel-1 images, a more flexible and accurate model for ship detection can be built.

Active Fire Detection Using Landsat 8 OLI Images: A Case of 2019 Australia Fires (Landsat 8 OLI 영상을 이용한 산불탐지: 2019년 호주 산불을 사례로)

  • Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.775-784
    • /
    • 2020
  • Recent global warming and anthropogenic activities have caused more frequent and massive wildfires with longer durations and more significant damages. MODIS has been monitoring global wildfires for almost 20 years, and GK2A and Himawari-8 are observing the wildfires in East Asia 144 times a day. However, the spatial resolution of 1 to 2 km is not sufficient for the detection of small and medium-size active fires, and therefore the studies on the active fire detection using high-resolution images are essential. However, there is no official product for the high-resolution active fire detection. Hence, we implemented the active fire detection algorithm of Landsat 8 and carried out a high-resolution-based detection of active fires in Australia in 2019, followed by the comparisons with the products of Himawari-8 and MODIS. Regarding the intense fires, the three satellites showed similar results, whereas the weak igniting and extinguishing fires or the fires in narrow areas were detected by only Landsat 8 with a 30m resolution. Small-sized fires, which are the majority in Korea, can be detected by the high-resolution satellites such as Landsat 8, Sentinel-2, Kompsat-3A, and the forthcoming Kompsat-7. Also, a comprehensive analysis together with the geostationary satellites in East Asia such as GK2A, Himawari-8, and Fengyun-3 will help the interoperability and the improvement of spatial and temporal resolutions.

Automatic selection method of ROI(region of interest) using land cover spatial data (토지피복 공간정보를 활용한 자동 훈련지역 선택 기법)

  • Cho, Ki-Hwan;Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.171-183
    • /
    • 2018
  • Despite the rapid expansion of satellite images supply, the application of imagery is often restricted due to unautomated image processing. This paper presents the automated process for the selection of training areas which are essential to conducting supervised image classification. The training areas were selected based on the prior and cover information. After the selection, the training data were used to classify land cover in an urban area with the latest image and the classification accuracy was valuated. The automatic selection of training area was processed with following steps, 1) to redraw inner areas of prior land cover polygon with negative buffer (-15m) 2) to select the polygons with proper size of area ($2,000{\sim}200,000m^2$) 3) to calculate the mean and standard deviation of reflectance and NDVI of the polygons 4) to select the polygons having characteristic mean value of each land cover type with minimum standard deviation. The supervised image classification was conducted using the automatically selected training data with Sentinel-2 images in 2017. The accuracy of land cover classification was 86.9% ($\hat{K}=0.81$). The result shows that the process of automatic selection is effective in image processing and able to contribute to solving the bottleneck in the application of imagery.

Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster (대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식)

  • Han, Soohee;Song, Jeong Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.445-452
    • /
    • 2019
  • In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.