Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.6.1.9

Urban Subsidence Monitoring in Ulsan City Using GACOS Based Tropospheric Delay Corrected Time-series SBAS-InSAR Technique  

Vadivel, Suresh Krishnan Palanisamy (Future Innovation Institute, Seoul National University)
Kim, Duk-jin (School of Earth and Environmental Sciences, Seoul National University)
Lee, Jung-hoon (School of Earth and Environmental Sciences, Seoul National University)
Song, Juyoung (School of Earth and Environmental Sciences, Seoul National University)
Kim, Junwoo (Future Innovation Institute, Seoul National University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.6_1, 2022 , pp. 1081-1089 More about this Journal
Abstract
This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS).We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.
Keywords
Ulsan city; Subsidence; Time-series InSAR; GACOS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen, M., R. Tomas, Z. Li, M. Motagh, T. Li, L. Hu, H. Gong, X. Li, J. Yu, and X. Gong, 2016. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry, Remote Sensing, 8(6): 468. https://doi.org/10.3390/rs8060468   DOI
2 Hooper, A. and H. A. Zebker, 2007. Phase unwrapping in three dimensions with application to InSAR time series, Journal of Optical Society of America A, 24(9): 2737-2747. https://doi.org/10.1364/JOSAA.24.002737   DOI
3 Li, Z., E. Fielding, P. Cross, and R. Preusker, 2009. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models, International Journal of Remote Sensing, 30(13): 3343-3363. https://doi.org/10.1080/01431160802562172   DOI
4 Bekaert, D.P.S., B.D. Hamlington, B. Buzzanga, and C.E. Jones, 2017. Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA), Scientific Reports, 7(1): 14752. https://doi.org/10.1038/s41598-017-15309-5   DOI
5 Burgmann, R., P.A. Rosen, and E.J. Fielding, 2000. Synthetic Aperture Radar Interferometry to Measure Earth's Surface Topography and Its Deformation, Annual Review of Earth and Planetary Sciences, 28(1): 169-209. https://doi.org/10.1146/annurev.earth.28.1.169   DOI
6 Abidin, H.Z., R. Djaja, D. Darmawan, S. Hadi, A. Akbar, H. Rajiyowiryono, Y. Sudibyo, I. Meilano, M.A. Kasuma, J. Kahar, and C. Subarya, 2001. Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System, Natural Hazards, 23(2): 365-387. https://doi.org/10.1023/A:1011144602064   DOI
7 Agram, P.S., R. Jolivet, B. Riel, Y. N. Lin, M. Simons, E. Hetland, M.P. Doin, and C. Lasserre, 2013. New Radar Interferometric Time Series Analysis Toolbox Released, Eos, Transactions American Geophysical Union, 94(7): 69-70. https://doi.org/10.1002/2013EO070001   DOI
8 Park, Y. and H. Yoon, 1968. Explanatory text of the geological map of Ulsan sheet, Geological Survey of Korea, Seoul, Korea, p. 20.
9 Zhou, C., H. Gong, B. Chen, F. Zhu, G. Duan, M. Gao, and W. Lu, 2016. Land subsidence under different land use in the eastern Beijing plain, China 2005-2013 revealed by InSAR timeseries analysis, GIScience & Remote Sensing, 53: 671-688. https://doi.org/10.1080/15481603.2016.1227297   DOI
10 Krishnan, P.V.S., D.-J. Kim, and J. Jung, 2017. Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal Revealed from SBAS-DInSAR Analysis, GIScience & Remote Sensing, 55(4): 604-621. https://doi.org/10.1080/15481603.2017.1422312   DOI
11 Tomas, R. and Z. Li, 2017. Earth observations for geohazards: Present and future challenges, Remote Sensing, 9(3): 194. https://doi.org/10.3390/rs9030194   DOI
12 Jo, M.-J., J.-S. Won, and S.-W. Kim, 2011. A time-series observation of ground subsidence at Ulsan area using SAR interferometry, Proc. of 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, Sep. 26-30, pp. 834-836.
13 Hooper, A., H. Zebker, P. Segall, and B. Kampes, 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31(23): 1-5. https://doi.org/10.1029/2004GL021737   DOI
14 Huang, J., S. Khan, A. Ghulam, W. Crupa, I. Abir, A. Khan, D. Kakar, A. Kasi, and N. Kakar, 2016. Study of Subsidence and Earthquake Swarms in the Western Pakistan, Remote Sensing, 8(11): 956. https://doi.org/10.3390/rs8110956   DOI
15 Jeon, H.-T., S.-Y. Hamm, C.-M. Lee, W.-R. Lim, S.-M. Yun, and H.-J. Park, 2018. Analyzing the Change of Surface Water and Groundwater Systems Caused by Tunnel Construction in Northern Ulsan City, The Journal of Engineering Geology, 28(1): 81-99. https://doi.org/10.9720/kseg.2018.1.081   DOI
16 Jolivet, R., P.S. Agram, N.Y. Lin, M. Simons, M.P. Doin, G. Peltzer, and Z. Li, 2014. Improving InSAR geodesy using global atmospheric models, Journal of Geophysical Research: Solid Earth, 119(3): 2324-2341. https://doi.org/10.1002/2013JB010588   DOI
17 Onn, F. and H. Zebker, 2006. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network, Journal of Geophysical Research: Solid Earth, 111(B9): 1-16. https://doi.org/10.1029/2005JB004012   DOI
18 Solari, L., A. Ciampalini, F. Raspini, S. Bianchini, and S. Moretti, 2016. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization, Remote Sensing, 8(2): 120. https://doi.org/10.3390/rs8020120   DOI
19 Chaussard, E., F. Amelung, H. Abidin, and S.-H. Hong, 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction, Remote Sensing of Environment, 128: 150-161. https://doi.org/10.1016/j.rse.2012.10.015   DOI
20 Bamler, R. and P. Hartl, 1998. Synthetic aperture radar interferometry, Inverse Problems, 14(4): R1. https://doi.org/10.1088/0266-5611/14/4/001   DOI
21 Jiang, L. and H. Lin, 2010. Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport, Hong Kong, Engineering Geology, 110(3): 77-92. https://doi.org/10.1016/j.enggeo.2009.11.005   DOI
22 Hooper, A., 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 35(16): 1-5. https://doi.org/10.1029/2008GL034654   DOI
23 Chen, C.-T., J.-C. Hu, C.-Y. Lu, J.-C. Lee, and Y.-C. Chan, 2007. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan, Engineering Geology, 95(1-2): 30-47. https://doi.org/10.1016/j.enggeo.2007.09.001   DOI
24 Du, Z., L. Ge, A. H.-M. Ng, Q. Zhu, X. Yang, and L. Li, 2018. Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel1/2 and ALOS-2 satellite images, International Journal of Applied Earth Observation and Geoinformation, 67: 54-68. https://doi.org/10.1016/j.jag.2018.01.001   DOI
25 Fattahi, H., P. Agram, and M. Simons, 2017. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis, IEEE Transactions on Geoscience and Remote Sensing, 55(2): 777-786. https://doi.org/10.1109/TGRS.2016.2614925   DOI
26 Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20. https://doi.org/10.1109/36.898661   DOI
27 Galloway, D.L. and T.J. Burbey, 2011. Review: Regional land subsidence accompanying groundwater extraction, Hydrogeology Journal, 19(8): 1459-1486. https://doi.org/10.1007/s10040-011-0775-5   DOI
28 Hooper, A., P. Segall, and H. Zebker, 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos, Journal of Geophysical Research: Solid Earth, 112(B7): 1-21. https://doi.org/10.1029/2006JB004763   DOI
29 Chaussard, E., S. Wdowinski, E. Cabral-Cano, and F. Amelung, 2014. Land subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sensing of Environment, 140: 94-106. https://doi.org/10.1016/j.rse.2013.08.038   DOI
30 Sowter, A., M.B.C. Amat, F. Cigna, S. Marsh, A. Athab, and L. Alshammari, 2016. Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique, International Journal of Applied Earth Observation and Geoinformation, 52: 230-242. https://doi.org/10.1016/j.jag.2016.06.015   DOI
31 Yu, C., Z. Li, N.T. Penna, and P. Crippa, 2018. Generic atmospheric correction model for interferometric synthetic aperture radar observations, Journal of Geophysical Research: Solid Earth, 123(10): 9202-9222. https://doi.org/10.1029/2017JB015305   DOI
32 Zebker, H. A. and J. Villasenor, 1992. Decorrelation in interferometric radar echoes, IEEE Transactions on Geoscience and Remote Sensing, 30(5): 950-959.   DOI
33 Chen, C.W. and H.A. Zebker, 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1709-1719. https://doi.org/10.1109/TGRS.2002.802453   DOI