• Title/Summary/Keyword: sentinel-2

Search Result 262, Processing Time 0.024 seconds

Grounding Line Change of Ronne Ice Shelf, West Antarctica, from 1996 to 2015 Observed by using DDInSAR

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Grounding line of a glacier or ice shelf where ice bottom meets the ocean is sensitive to changes in the polar environment. Recent rapid changes of grounding lines have been observed especially in southwestern Antarctica due to global warming. In this study, ERS-1/2 and Sentinel-1A Synthetic Aperture Radar (SAR) image were interferometrically acquired in 1996 and 2015, respectively, to monitor the movement of the grounding line in the western part of Ronne Ice Shelf near the Antarctic peninsula. Double-Differential Interferometric SAR (DDInSAR) technique was applied to remove gravitational flow signal to detect grounding line from the interferometric phase due to the vertical displacement of the tide. The result showed that ERS-1/2 grounding lines are almost consistent with those from Rignot et al. (2011) which used the similar dataset, confirming the credibility of the data processing. The comparison of ERS-1/2 and Sentinle-1A DDInSAR images showed a grounding line retreat of $1.0{\pm}0.1km$ from 1996 to 2015. It is also proved that the grounding lines based on the 2004 MODIS Mosaic of Antarctica (MOA) images and digital elevation model searching for ice plain near coastal area (Scambos et al., 2017), is not accurate enough especially where there is a ice plain with no tidal motion.

Forest Vertical Structure Mapping from Bi-Seasonal Sentinel-2 Images and UAV-Derived DSM Using Random Forest, Support Vector Machine, and XGBoost

  • Young-Woong Yoon;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.123-139
    • /
    • 2024
  • Forest vertical structure is vital for comprehending ecosystems and biodiversity, in addition to fundamental forest information. Currently, the forest vertical structure is predominantly assessed via an in-situ method, which is not only difficult to apply to inaccessible locations or large areas but also costly and requires substantial human resources. Therefore, mapping systems based on remote sensing data have been actively explored. Recently, research on analyzing and classifying images using machine learning techniques has been actively conducted and applied to map the vertical structure of forests accurately. In this study, Sentinel-2 and digital surface model images were obtained on two different dates separated by approximately one month, and the spectral index and tree height maps were generated separately. Furthermore, according to the acquisition time, the input data were separated into cases 1 and 2, which were then combined to generate case 3. Using these data, forest vetical structure mapping models based on random forest, support vector machine, and extreme gradient boost(XGBoost)were generated. Consequently, nine models were generated, with the XGBoost model in Case 3 performing the best, with an average precision of 0.99 and an F1 score of 0.91. We confirmed that generating a forest vertical structure mapping model utilizing bi-seasonal data and an appropriate model can result in an accuracy of 90% or higher.

A preliminary assessment of high-spatial-resolution satellite rainfall estimation from SAR Sentinel-1 over the central region of South Korea (한반도 중부지역에서의 SAR Sentinel-1 위성강우량 추정에 관한 예비평가)

  • Nguyen, Hoang Hai;Jung, Woosung;Lee, Dalgeun;Shin, Daeyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.393-404
    • /
    • 2022
  • Reliable terrestrial rainfall observations from satellites at finer spatial resolution are essential for urban hydrological and microscale agricultural demands. Although various traditional "top-down" approach-based satellite rainfall products were widely used, they are limited in spatial resolution. This study aims to assess the potential of a novel "bottom-up" approach for rainfall estimation, the parameterized SM2RAIN model, applied to the C-band SAR Sentinel-1 satellite data (SM2RAIN-S1), to generate high-spatial-resolution terrestrial rainfall estimates (0.01° grid/6-day) over Central South Korea. Its performance was evaluated for both spatial and temporal variability using the respective rainfall data from a conventional reanalysis product and rain gauge network for a 1-year period over two different sub-regions in Central South Korea-the mixed forest-dominated, middle sub-region and cropland-dominated, west coast sub-region. Evaluation results indicated that the SM2RAIN-S1 product can capture general rainfall patterns in Central South Korea, and hold potential for high-spatial-resolution rainfall measurement over the local scale with different land covers, while less biased rainfall estimates against rain gauge observations were provided. Moreover, the SM2RAIN-S1 rainfall product was better in mixed forests considering the Pearson's correlation coefficient (R = 0.69), implying the suitability of 6-day SM2RAIN-S1 data in capturing the temporal dynamics of soil moisture and rainfall in mixed forests. However, in terms of RMSE and Bias, better performance was obtained with the SM2RAIN-S1 rainfall product over croplands rather than mixed forests, indicating that larger errors induced by high evapotranspiration losses (especially in mixed forests) need to be included in further improvement of the SM2RAIN.

The Efficacy of Detecting a Sentinel Lymph Node through Positron Emission Tomography/Computed Tomography (근골격계 악성 종양 환자의 림프절 전이 발견을 위한 양전자 방출 컴퓨터 단층 촬영기(Positron Emission Tomography/Computed Tomography)의 유용성)

  • Shin, Duk-Seop;Na, Ho Dong;Park, Jae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.509-518
    • /
    • 2019
  • Purpose: Lymph node metastasis is a very important prognostic factor for all skin cancers and some sarcomas. A sentinel lymph node (SLN) biopsy is the most useful technique for identifying SLNs. Recently, a new generation of diagnostic tools, such as single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/CT (PET/CT) enabled the detection of SLNs. This study compared the efficacy of PET/CT for detecting lymph node metastases with a SLN biopsy in a single medical center. Materials and Methods: From 2008 to 2018, 72 skin cancers of sarcoma patients diagnosed with some lymph node involvement in a whole body PET/CT reading were assessed. Patients suspected of lymph node metastasis were sent to biopsy and those suspected to be reactive lesions were observed. The analysis was performed retrospectively using the medical records, clinical information, PET/CT readings, and pathology results. Results: The age of patients ranged from 14 to 88 years and the mean follow-up period was 2.4 years. Twenty-two patients were suspected of a lymph node metastasis and confirmed. The sensitivity, specificity, positive predictive value and negative predictive value of PET/CT images in sarcoma and non-sarcoma tumors were increased significantly when the expert's findings were considered together. Conclusion: PET/CT is effective in detecting lymph node metastases.

Development of a storage level estimation and forecasting techniques in Yongdam Dam basin for drought monitoring using satellite data (가뭄감시를 위한 위성자료 기반 용담댐 유역 저수위 모니터링 및 예측 기술 개발)

  • Park, Kyung Won;Yoon, Sun Kwon;Lee, Seong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.378-378
    • /
    • 2019
  • 본 연구에서는 용담댐 유역을 대상으로 저수위/저수량 모니터링 및 예측을 위하여 고해상도 위성관측 자료를 이용하는 방법과 위성으로부터 추출한 강수량 자료로부터 가뭄지수를 이용한 저수위를 모니터링하고 SSA를 이용한 PCA방법으로 예측모델을 구축하여 가뭄을 예측하는 방법을 개발하였다. 용담댐 저수위와 SPI(3)와의 상관계수가 0.78로 매우 높은 상관성을 보였으며, 위성자료를 통하여 산정한 가뭄지수를 활용하여 댐 저수위/저수량 모니터링 및 예측 가능성을 진단하였다. SSA에 의한 주성분 분석결과 SPI(3)과 각 RC자료의 상관관계를 분석한 결과 CC=0.87~0.99의 높은 상관성을 보였으며, 표준화된 댐 저수위(N-W.S.L.)와 RC자료의 상관관계를 분석한 결과 CC=0.83~0.97의 비교적 높은 상관성을 보임을 확인하였다. 또한, Sentinel-2 위성의 MSI (Multi-Spectral Instrument) 센서로 댐수위의 변화를 모니터링하기 위해 지수 기법을 적용하여 수체 탐지 알고리즘을 개발하였으며, 용담댐유역에 대해 2016년부터 2018년까지의 수계 면적 변화를 분석하였다. 이를 기반으로 Sentinel-2 위성영상으로 추출한 수계 면적 변화를 이용하여 가뭄감시 분야에 대한 활용 가능성을 제시하였다. 본 연구의 결과는 다양한 위성관측자료로부터 미계측 지역의 저수량 모니터링과 수문학적 가뭄 모니터링/예측에 활용이 가능할 것이다.

  • PDF

The Estimated Source of 2017 Pohang Earthquake Using Surface Deformation Modeling Based on Multi-Frequency InSAR Data

  • Fadhillah, Muhammad Fulki;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • An earthquake occurred on 17 November 2017 in Pohang, South Korea with a strength of 5.4 Mw. This is the second strongest earthquake recorded by local authorities since the equipment was first installed. In order to improve understanding of earthquakes and surface deformation, many studies have been conducted according to these phenomena. In this research, we will estimate the surface deformation using the Okada model equation. The SAR images of three satellites with different wavelengths (ALOS-2, Cosmo SkyMed and Sentinel-1) were used to produce the interferogram pairs. The interferogram is used as a reference for surface deformation changes by using Okada to determine the source of surface deformation that occurs during an earthquake. The Non-linear optimization (Levemberg-Marquadrt algorithm) and Monte Carlo restart was applied to optimize the fault parameter on modeling process. Based on the modeling results of each satellite data, the fault geometry is ~6 km length, ~2 km width and ~5 km depth. The root mean square error values in the surface deformation model results for Sentinel, CSK and ALOS are 0.37 cm, 0.79 cm and 1.47 cm, respectively. Furthermore, the results of this modeling can be used as learning material in understanding about seismic activity to minimize the impacts that arise in the future.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Mosquito Distribution and Detection of Flavivirus Using Real Time RT-PCR in Jeju Island, 2017 (제주지역 모기의 계절적 발생소장 및 Real Time RT-PCR을 이용한 Flavivirus 감염조사(2017))

  • Lee, Che-Wook;Hwang, Kyu-Kye
    • Korean journal of applied entomology
    • /
    • v.57 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • This study examined the seasonal, regional distribution of mosquito vectors related with disease vectors in the Jeju. From March to November, sample were collected from 11 points in four environmentally different sites in Jeju Island. Samples were collected twice a month using a black-light trap and a BG sentinel trap. Overall, five genera and seven species types of 6,042 female mosquitos were collected. Among the collected mosquitos, 4,159 (68.8%) and 1,348 (24.4%) were Culex pipiens and Aedes albopictus, respectively, making them the dominant species. Additionally, collection using the black light trap produced 72.8 entities per trap in Jungang-dong service center in the center of the city, which was the highest value, while the lowest amount of 1.4 per trap was recovered from the airport. When the BG sentinel trap was used, the largest recovery was observed in the port, where there were 71.7 entities per trap, while the lowest amount of 28.3 entities per trap was recovered at Gealmae Eco Park. The overall number of mosquitoes collected started to increase from May, and reached the largest value of 1,156 (19.1%) in August. Trapped mosquitoes are created 364 pools of up to 50 grains per pool, by season, by environmental, and by species. When the pools were used, no flaviviral infection was observed upon real time RT-PCR.

Use of Sentinel Lymph Node Biopsy after Neoadjuvant Chemotherapy in Patients with Axillary Node-Positive Breast Cancer in Diagnosis

  • Choi, Hee Jun;Kim, Isaac;Alsharif, Emad;Park, Sungmin;Kim, Jae-Myung;Ryu, Jai Min;Nam, Seok Jin;Kim, Seok Won;Yu, Jonghan;Lee, Se Kyung;Lee, Jeong Eon
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.433-4341
    • /
    • 2018
  • Purpose: This study aimed to evaluate the effects of sentinel lymph node biopsy (SLNB) on recurrence and survival after neoadjuvant chemotherapy (NAC) in breast cancer patients with cytology-proven axillary node metastasis. Methods: We selected patients who were diagnosed with invasive breast cancer and axillary lymph node metastasis and were treated with NAC followed by curative surgery between January 2007 and December 2014. We classified patients into three groups: group A, negative sentinel lymph node (SLN) status and no further dissection; group B, negative SLN status with backup axillary lymph node dissection (ALND); and group C, no residual axillary metastasis on pathology with standard ALND. Results: The median follow-up time was 51 months (range, 3-122 months) and the median number of retrieved SLNs was 5 (range, 2-9). The SLN identification rate was 98.3% (234/238 patients), and the false negative rate of SLNB after NAC was 7.5%. There was no significant difference in axillary recurrence-free survival (p=0.118), disease-free survival (DFS; p=0.578) or overall survival (OS; p=0.149) among groups A, B, and C. In the subgroup analysis of breast pathologic complete response (pCR) status, there was no significant difference in DFS (p=0.271, p=0.892) or OS (p=0.207, p=0.300) in the breast pCR and non-pCR patients. Conclusion: These results suggest that SLNB can be feasible and oncologically safe after NAC for cytology-determined axillary node metastasis patients and could help reduce arm morbidity and lymphedema by avoiding ALND in SLN-negative patients.

Analysis of Surface Displacement of Oil Sands Region in Alberta, Canada Using Sentinel-1 SAR Time Series Images (Sentinel-1 SAR 시계열 영상을 이용한 캐나다 앨버타 오일샌드 지역의 지표변위 분석)

  • Kim, Taewook;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • SAGD (Steam-Assisted Gravity Drainage) method is widely used for oil recovery in oil sands regions. The SAGD operation causes surface displacement, which can affect the stability of oil recovery plants and trigger various geological disasters. Therefore, it isimportant to monitor the surface displacement due to SAGD in the oil sands region. In this study, the surface displacement due to SAGD operations of the Athabasca oil sands region in Alberta, Canada, was observed by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique to the Sentinel-1 time series SAR data acquired from 2016 to 2021. We also investigated the construction and expansion of SAGD facilitiesfrom Landsat-7/8 time seriesimages, from which the characteristics of the surface displacement according to the oil production activity of SAGD were analyzed. Uplift rates of 0.3-2.5 cm/yr in the direction of line of sight were observed over the SAGDs and their vicinity, whereas subsidence rates of -0.3--0.6 cm/yr were observed in areas more than several kilometers away from the SAGDs and not affected by oil recovery activities. Through the analysis of Landsat-7/8 images, we could confirm that the SAGDs operating after 2012 and showing high oil production activity caused uplift rates greater than 1.6 cm/yr due to the subsurface steam injection. Meanwhile, very small uplift rates of several mm per year occurred over SAGDs which have been operated for a longer period of time and show relatively low oil production activity. This was probably due to the compression of reservoir sandstone due to continuous oil recovery. The subsidence observed in areas except for the SAGDs and their vicinity estimated to be a gradual land subsidence caused by melting of the permafrost. Considering the subsidence, it was expected that the uplift due to SAGD operation would be greater than that observed by the PSInSAR. The results of this study confirm that the PSInSAR can be used as an effective means for evaluating productivity and stability of SAGD in the extreme cold regions.