• Title/Summary/Keyword: sensorless algorithm

Search Result 293, Processing Time 0.03 seconds

Speed Sensorless Vector Control Implementation of Induction Motor Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 유도전동기 속도 센서리스 벡터제어 구현)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1086-1087
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control algorithm of induction motor using MATLAB/SIMULINK. The proposed method utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, which enables stable estimation of rotor flux. Estimated rotor speed, which is used to speed controller of induction motor, is based on estimated flux. The overall system consisted of speed controller with the most general PI controller, current controller, flux controller. Speed sensorless vector control algorithm is implemeted as block diagrams using MATLAB/SIMULINK. Realtime control is perform by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Sensorless Controller for a Interior Permanent Magnet Synchronous Motor based on a Fuzzy Controller and Instantaneous Reactive Power (퍼지 제어기와 순시무효 전력을 이용한 IPMS모터의 Sensorless 제어)

  • Kang, Hyoung-Seok;Joung, Woo-Taik;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.175-177
    • /
    • 2005
  • An interior permanent magnet synchronous motor (IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless vector control based on a fuzzy controller and an instantaneous reactive power. Effectiveness of algorithm is confirmed by the experiments.

  • PDF

Low-Speed Performance Improvement of Slip Based Sensorless Control for Three-Phase Induction Motor Used in Treadmill (트레드밀에 사용되는 3상 유도전동기의 슬립 기반 센서리스 제어 저속성능 향상)

  • Lee, Su-Hyoung;Lee, Sang-Hee;Mun, Tae-Yang;Han, Hee-Min;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Recent high-end treadmills are demanding stable performance at lower speeds. In this study, a slip control-based induction motor sensorless algorithm for treadmills, which have heavy load variations, is proposed. A modified Gopinath flux estimator is used to evaluate the rotor flux. Results indicate that a good speed regulation performance is achieved even at a low speed of approximately 3 Hz with a nominal exercise load of 90 kg body weight. The slip calculation method in the stationary coordinate system is adopted to improve the control stability. The proposed algorithm is verified throughout the simulation study using PSIM, and the experimental test consists of a commercial treadmill system.

A Fuzzy Back-EMF Observer for Sensorless Drive of BLDC Motor (브러시리스 전동기의 센서리스 구동을 위한 퍼지 역기전력 관측기)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • In this paper, a novel sensorless drive for brushless DC (BLDC) motor using the fuzzy back-EMF observer is proposed to improve the performance of conventional sensorless drive methods. Existing sensorless drive methods of the BLDC motor have low performance at transients or low speed range and occasionally require additional circuits. To cope with these problems, the back-EMF of the BLDC motor must be precisely estimated by a fuzzy logic, which is suitable to estimate the back-EMF which has a trapezoidal shape. The proposed algorithm using fuzzy back-EMF observer can achieve robust control for the change of an external condition and continuously estimate position of the rotor at transients as well as at steady state. The superiority of the proposed algorithm is proved through the simulation compared with other sensorless drive methods.

Sensorless Algorithm of Brushless DC Motors Using Terminal Voltage of the One Phase (한상의 단자전압을 이용한 BLDC 전동기 센서리스 알고리즘)

  • Yoon, Yong-Ho;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • This paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor. Depending on the terminal voltage sensing rotor position, active filter is used for position information. This leads to a significant reduction in the component device of the sensorless circuit. Therefore this is a advantage for the cost saving and size reduction. With indirect sensing methods based on detection of the terminal voltage that require active filtering, the position information needs the six divider section by PLL circuit, the binary counter and johnson counter by the EPLD. Finally, this algorithm can estimate the rotor position information similar to Hall-sensor sticked the three-phase BLDC motor. As a result, the method described that it is not sensitive to filtering delays, allowing the motor to achieve a good performance over a wide speed range. In addition, a simple starting method and a speed estimation approach are also proposed. Experimental and simulation results are included to verify the proposed scheme.

Experimental Evaluation of Position Sensorless Control on Hybrid Electric Vehicle Applications

  • Choi, Chan-Hee;Kim, Bum-Sik;Lee, Young-Kook;Jung, Jin-Hwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.464-470
    • /
    • 2011
  • In this paper, the feasibility of applying a position sensorless control technique to hybrid electric vehicles (HEVs) is practically evaluated. The proposed position estimator has a straightforward structure with properties that combines the model and the saliency tracking-based rotor position estimation for interior permanent magnet synchronous motors (IPMSMs). The proposed method can be used in the event of sensor loss or sensor recovery to sustain continuity of operations. The developed system takes into account the estimated position transition between two distinct sensorless methods. The transition is enhanced by introducing a synchronized transition algorithm based on a single tracking observer. Extensive experimental results are presented to verify the principles and show a reliable estimation performance over the entire speed range including standstill under 150% load conditions.

Design of Sensorless Controller for Interior Permanent-Magnet BLDC Motor (영구 자석 매립형 BLDC Motor의 Sensorless 제어기 설계)

  • Kim, Hag-Wone;Yeum, Kwan-Ho;Cho, Kwan-Youl;Ahn, Jun-Ho;Shin, Hyoun-Jeong;Byun, Il-Soo;Kim, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.299-301
    • /
    • 1996
  • Recently, as a result of the progress in power electronics and magnet technology, the applications of inverter fed BLDC Motor have increased for industry and home appliance. Also because of the high efficiency, good acoustic noise characteristic, BLDC Motor applications are growing. However, BLDC Motor requires position sensor, which has many problems such as high cost, more space and difficult to install. Therefore, sensorless control algorithm is being studied. In this paper, sensorless algorithm for interior permanent magnet BLOC motor adaptable for home appliance is proposed. The maximum torque per amp operation with advance angle considering load torque and speed was simulated and verified through the experiment.

  • PDF

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.

A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point (소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구)

  • Jo, June-Woo;Hwang, Don-Ha;Hwang, Young-Gi;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.