• Title/Summary/Keyword: sensorless algorithm

Search Result 293, Processing Time 0.025 seconds

Speed-Sensorless Induction Motor Control System using a Rotor Speed Compensation (회전자 속도보상을 이용한 센서리스 유도전동기 제어 시스템)

  • Jeong Gang-Youl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.3
    • /
    • pp.154-161
    • /
    • 2005
  • This paper proposes a speed-sensorless induction motor control system using a rotor speed compensation. To explain the proposed system, this paper describes an induction motor model in the synchronous reference frame for the vector control. The rotor flux is estimated by the rotor flux observer using the reduced-dimensional state estimator technique. The estimated rotor speed is directly obtained from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. The error of the rotor time constant is indirectly reflected in the rotor speed compensation using the compensation of the flux error angle. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. An implementation of pulse-width modulation (PWM) pulses using an effective space vector modulation (SVM) is briefly mentioned. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Speed-Sensorless Speed Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 직류서보전동기의 속도 센서리스 속도제어)

  • Him, Sang-Hoon;Kim, Myung-Joon;Yun, Kwang-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2203-2205
    • /
    • 2003
  • In this thesis, it is a purpose to carry out speed control of DC servo motor without using encoder and the resolver which are speed sensor of DC servo motor and it should use estimate algorithm or observer and must assume a speed in order to control speed sensorless. Therefore, high gain observer was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the speed that assumed done in the thesis. Also, implementation used easy PI controller in speed-controller of DC motor though it was simple. It is compared estimate performance of Luenberger and high gain observer in a way of computer simulation in order to verify performance of the high gain observer which proposed in this thesis, and proved excellency of the high gain observer. And the thesis proved that smooth speed sensorless control of DC servo motor was implemented in invariable driving.

  • PDF

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Eliminating Method of Estimated Magnetic Flux Offset in Flux based Sensorless Control Algorithm of Surface Mounted PM Synchronous Motor (표면부착형 영구자석 동기전동기의 자속기반 센서리스 제어 알고리즘의 추정자속 옵셋 제거 기법)

  • Kim, Hack-Jun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • The rotor position of a PM synchronous motor is commonly estimated from the mathematical model for the sensorless control without rotor position sensors. For the magnet flux-based rotor position estimator in the stationary reference frame, the magnet flux estimator for estimating rotor position and speed includes the integrator. The integrator in the magnet flux estimator may accumulate the offset of the current sensors and the voltage drift. This continuous accumulation of the offset may cause the drift and overflow in the integrator, such that the estimated rotor position and speed may fail to track the real rotor position and speed. In this paper, the magnet flux estimator without integrator is proposed to avoid overflow in the integrator. The proposed rotor position and speed estimator based on magnet flux estimator are verified through simulation and experiment.

PMSM Sensorless Control using Parallel Reduced-Order Extended Kalman Filter (병렬형 칼만 필터를 사용한 영구 자석 동기 전동기의 센서리스 제어)

  • Jang, Jin-Su;Park, Byoung-Gun;Kim, Tae-Sung;Lee, Dong-Myung;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.336-343
    • /
    • 2008
  • This paper proposes a novel sensorless control scheme for a Permanent Magnet Synchronous Motor (PMSM) by using a parallel reduced-order Extended Kalman Filter. The proposed scheme can obtain rotor position and speed by back-EKF that is estimated by reduced-order ETD and save computation time great)y due to using a parallel structure that works by turns every sampling time. Therefore, proposed scheme has merits of conventional EKF, and problems of parameter sensitivity are partially overcome. And proposed scheme can safely estimate rotor speed and position by using new algorithms according to driving regions. Experimental results show the validity of the proposed estimation technique, and to verify the merit of the proposed scheme, a comparison of a new reduced-order EKF algorithm with a conventional EKF algorithm has been also made in terms of computation time.

Sensorless Control Strategy of IPMSM Based on a Parallel Reduced-Order Extended Kalman Filter (병렬형 저감 차수 칼만 필터를 이용한 매입형 영구자석 동기전동기의 센서리스 제어)

  • Yim, Dong-Hoon;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper proposes a novel sensorless control scheme for a Permanent Magnet Synchronous Motor (PMSM) by using a parallel reduced-order Extended Kalman Filter. The proposed scheme can obtain rotor position and speed by back-EMF that is estimated by reduced-order EKF and save computation time greatly due to using a parallel structure that works by turns every sampling time. Therefore, proposed scheme has merits of conventional EKF, and problems of parameter sensitivity are partially overcome. And proposed scheme can safely estimate rotor speed and position by using new algorithms according to driving regions. Experimental results show the validity of the proposed estimation technique, and to verify the merit of the proposed scheme, a comparison of a new reduced-order EKF algorithm with a conventional EKF algorithm has been also made in terms of computation time.

Sensorless Vertor Control of PMSM using Neural Networks (신경회로망을 이용한 PMSM의 센서리스 벡터제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Kim, Jong-Gwan;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.240-243
    • /
    • 2003
  • Sensorless Vector control of the permanent magnet synchronous motor(PMSM) typically requires knowledge of the PMSM structure and parameters, which in some situations are not readily available or may be difficult to obtain. In this paper, by measuring the currents of the PMSM drive, a neural-network-based rotor position and speed estimation method for PMSM is described. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to PMSM drive system. The operating characteristics controlled by neural networks control are examined in detail.

  • PDF

Using Closed Loop Flux Estimator The Sensorless Vector Control Of Induction Motor (폐루프 자속추정기를 이용한 철도차량의 유도 전동기 센서리스 벡터제어)

  • Jang, Jin-Hyog;Hwang, Lak-Hun;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1092-1099
    • /
    • 2006
  • Displayed system equationally using accurate dynamic modeling of whole system including induction motor and load to analyze induction motor to normal condiction's action characteristic as well as transient characteristic using power converter device such as inverter in this paper. Also, presume adhesive power calculation through speed sensorless vector control and load torque disturbance observer for maximum tractive force control. Confirmed proposed algorithm through simulation and an experiment using railroad experiment equipment to embody control algorithm of such system. With relation of adhesive power about the wage speed by speed addition and subtraction of railway vehicle, embodied all sorts item by experiment equipment.

  • PDF

Development of the Starting Algorithm of a Brushless DC Motor Using the Inductance Variation (인덕턴스의 변화를 이용한 브러시리스 DC 모터의 초기 구동 알고리즘 개발 및 구현)

  • Park, Jae-Hyun;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.157-164
    • /
    • 2000
  • This paper presents a method to detect a rotor position and to drive a BLDC motor from standstill to medium speed without any position sensor comparing the current responses due to the inductance variation in the rotor position. A rotor position at a standstill is identified by the current responses of six pulses injected to each phase of a motor. Once the motor stars up pulse train that is composed of long and short pulses is injected to the phase corresponding to produce the maximum torque and the next phase continuously. it provides not only the torque but also the information of the next commutation time effectively when the response of long and short pulses crosses each other after the same time delay. This method which is verified experimentally using a DSP can drive a BLDC motor to the medium speed smoothly without any rattling and time delay compared with the conventional sensorless algorithm.

  • PDF