• Title/Summary/Keyword: sensor noise

Search Result 1,768, Processing Time 0.036 seconds

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

An optical instrumentation using a sensor with a sensordummy against noises on sensor and transmission line

  • Mine, Katsutoshi;Kubota, Nobuhisa;Morimoto, Fumio;Sanada, Mizuho;Qi, Zhang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.550-553
    • /
    • 1993
  • Methods of Alternating Noise Canceling were previously developed for the optical instrumentation;one using a dual photo sensor and another using a single photo sensor that could cancel normal mode noise on a transmission line, even if the noise was of equal status noise. But the methods could not remove noise on sensor line. This paper discusses a new method of using a photo sensor with a resistance sensordummy, effectively canceling equal status normal mode noise not only on a sensor line but also on a transmission line of an optical instrumentation. The accuracy of this method has been verified by experiments using sinusoidal wave as an equal status noise on a sensor line and/or rectangular wave as an equal status wide band noise on a transmission line respectively.

  • PDF

Noise PDF Analysis of Nonlinear Image Sensor Model;GOCI Case

  • Myung, Hwan-Chun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.191-194
    • /
    • 2007
  • The paper clarifies all the noise sources of a CMOS image sensor, with which the GOCI (Geostationary Ocean Color Imager) is equipped, and analyzes their contribution to a nonlinear image sensor model. In particular, the noise PDF (Probability Density Function) is derived in terms of sensor-gain coefficients: a linear and a nonlinear gains. As a result, the relation between the noise characteristic and the sensor gains is studied.

  • PDF

A Study on Analysis and Effect of Electronic Noise in an Inductive Displacement Sensor (유도형 변위 센서의 전기 노이즈 분석과 센서 성능에 미치는 영향 고찰)

  • 신우철;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.379-384
    • /
    • 2003
  • Noise is a problem in many electronic circuits and active control system. Arising from spuriously coupled noise from other circuits, it corrupts the signal of interest and introduces an uncertainty into information it contains. In this paper, re have researched noise characteristics of the inductive displacement sensor which has been designed. n first present basic concept and characteristics of magnetic field-coupled noise in the sensor output signal. Then, n are present relation noise and sensor performances. Finally, we concentrate low noise design of a sensor driver and a signal detection circuit.

  • PDF

Data-Driven Batch Processing for Parameter Calibration of a Sensor System (센서 시스템의 매개변수 교정을 위한 데이터 기반 일괄 처리 방법)

  • Kyuman Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.475-480
    • /
    • 2023
  • When modeling a sensor system mathematically, we assume that the sensor noise is Gaussian and white to simplify the model. If this assumption fails, the performance of the sensor model-based controller or estimator degrades due to incorrect modeling. In practice, non-Gaussian or non-white noise sources often arise in many digital sensor systems. Additionally, the noise parameters of the sensor model are not known in advance without additional noise statistical information. Moreover, disturbances or high nonlinearities often cause unknown sensor modeling errors. To estimate the uncertain noise and model parameters of a sensor system, this paper proposes an iterative batch calibration method using data-driven machine learning. Our simulation results validate the calibration performance of the proposed approach.

Adaptive Active Noise Control of Single Sensor Method (단일 센서 방식의 적응 능동 소음제어)

  • 김영달;장석구
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.941-948
    • /
    • 2000
  • Active noise control is an approach to reduce the noise by utilizing a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and an adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Oppenheim assumed that transfer function characteristics from the canceling source to the error sensor is only a propagation delay. This paper proposes a modified Oppenheim algorithm by considering transfer characteristics of speaker-path-sensor This transfer characteristics is adaptively cancelled by the proposed adaptive modeling technique. Feasibility of the proposed method is proved by computer simulations with artificially generated random noises and sine wave noise. The details of the proposed architecture. and theoretical simulation of the noise cancellation system for three dimension enclosure are presented in the Paper.

  • PDF

Low Noise Characteristics of the Comformal Sensor Array's Support Structure (곡면배열 센서의 저소음화를 위한 지지구조 설계 구조)

  • Lee, Jong-Kil;Lee, Sang-Won;Seo, Hee-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.340-341
    • /
    • 2010
  • Noise reduction is an important factor to design low noise sensor array. In this paper three layers of the de-coupler in the conformal sensor array were used to investigate noise reduction. Conformal sensor array is positioned in the layers and the distance from the layer is 0.25cm~1.5cm. Transfer function in the frequency density function is investigated according to the three different positions. When increasing the embedded distance the flow noise decreased in the region of the kx>10.

  • PDF

A Noise Re-radiation Calibration Technique in Interferometric Synthetic Aperture Radiometer for Sub-Y-type Array at Ka-Band

  • Seo Seungwon;Kim Sunghyun;Choi Junho;Park Hyuk;Lee Hojin;Kim Yonghoon;Kang Gumsil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.577-580
    • /
    • 2004
  • To overcome with large size noise source distribution network design difficulty in interferometric radiometer system, especially for sub-Y-type array, a new on-board calibration technique using noise re-radiation is proposed in this paper. The suggested calibration technique is using noise re-radiation effect of center antenna after noise source injection from matched load. This approach is especially proper to sub-Y-type array interferometric synthetic aperture radiometer in mm-wave frequency band. Compared with noise injection network of a conventional synthetic aperture radiometer, the system mass, volume, and hardware complexity is reduced and cost-effective. Only one internal noise source, matched load, is used for injection using noise re-radiation technique a small set of sub-Y receiver channels is calibrated. Detailed calibration scenario is discussed and simulation results about noise re­radiation effect are presented.

  • PDF

A Direction Finding Method for General Sensor Noise Correlation (일반적인 센서잡음상관에 이용되는 도래방향각 예측 방법)

  • 이일근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.379-386
    • /
    • 1992
  • In this paper a direction finding method which can which can estimate the direction angles of source signals impinging on the sensor array in which sensor noises are correlated is studied. This method performs the estimation of source direction angles form sensors, regardless of sensor noise correlation, by eliminating the sensor noise correlation coefficient which can be accurately estimated. Finally, this paper shows, through the computer simulation, that the proposed, method is extremely useful and superior when there exists the noise correlation between sensors, .

  • PDF

System Phase Noise Spectrum of the Transmission and Receiving System for COMS Sensor Data (통신해양기상위성 센서 데이터 송수신 시스템의 시스템 위상 잡음 스펙트럼)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1247-1253
    • /
    • 2007
  • The system phase noise spectrum distribution for COMS sensor data transmitter and receiver system was proposed in this paper. On the basis of the analyzed design parameter to reduce the phase noise effect in a receiver, the optimal system phase noise were proposed for raw, IRIT and HRIT data transmission that are sensor data, respectively. The proposed system phase noise provides the qualified transmission performance of sensor data and reduces the performance degradation due to phase noise generating in the transmission channel. Also the system phase noise spectrums are utilized in the design of frequency generation source for sensor data transmission and receiver system.