• Title/Summary/Keyword: sensor node gateway

Search Result 82, Processing Time 0.017 seconds

USN-based Water Treatment Plant Facilities Data Management Techniques and Reliability (USN 기반 수직형 정수처리시설 데이터 최적관리 및 신뢰성 검증연구)

  • Jang, Sang-Bok;Shin, Gang-Wook;Hong, Sung-Taek;Lee, An-Kyu;Park, Hye-Mi;Chun, Myung-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2736-2744
    • /
    • 2013
  • In this paper, we present a Smart Water Treatment Plant using Zigbee USN devices and a real-time monitoring system in K-water Flow Meter Calibration Center Building. For verification, the data of vertical type WTP such as flow rate, pressure, water level and water temperature are obtained by the Zigbee USN devices, operating in 2.45 GHz band, and be wirelessly surveilled by the real-time monitoring system. The received data from the sensor is transmitted to the data processing device, and then the processed data can be monitored on a smart phone. Consequently, the pilot plant based on the low-cost and high-efficiency USN has been developed with the performance analysis for the communication network and remote monitoring system on mobile devices.

$M^2$ MAC: MAC protocol for Real Time Robot Control System based on Underwater Acoustic Communication ($M^2$ MAC(Message Merging): 수중음파통신 기반의 실시간 로봇 제어 시스템을 위한 MAC 프로토콜)

  • Kim, Yung-Pyo;Park, Soo-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.88-96
    • /
    • 2011
  • Underwater acoustic communication is applicable in various areas, such as ocean data collection, undersea exploration and development, tactical surveillance, etc. Thus, robot control system construction used for underwater-robot like AUV or ROV is essential in these areas. In this paper, we propose the Message Merging MAC($M^2$-MAC) protocol, which is suitable for real time robot control system, considering energy efficiency in important parts of underwater acoustic sensor network constitution. In this proposed MAC protocol, gateway node receives the data from robot nodes according to the time slots that were allotted previously. And messages delivered from base-station are generated to one MAC frame by buffering process. Finally, generated MAC frames are broadcasted to all robot nodes in the cluster. Our suggested MAC protocol can also be hybrid MAC protocol, which is successful blend of contention based and contention-free based protocol through relevant procedure with Maintenance&Sleep (M&S) period, when new nodes join and leave as an orphan. We propose mathematical analysis model concerned about End-to-End delay and energy consumption, which is important factor in constructing real-time robot control system. We also verify the excellence of performance according to comparison of existing MAC protocols with our scheme.