• Title/Summary/Keyword: sensor networks security

Search Result 363, Processing Time 0.024 seconds

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

Mutual Attestation Protocol using Software-based Attestation Scheme in Sensor Network Environments (SWATT 기법을 이용한 센서 노드 간 상호 검증 프로토콜)

  • Heo, Kyung-Soo;Choi, Hyun-Woo;Jang, Hyun-Su;Eom, Young-Ik
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.9-18
    • /
    • 2008
  • Prevention of attacks being made through program modification in sensor nodes is one of the important security issues. The software-based attestation technology that verifies the running code by checking whether it is modified or not in sensor nodes is being used to solve the attack problem. However, the current software-based attestation techniques are not appropriate in sensor networks because not only they are targeting static networks that member nodes does not move, but also they lacks consideration on the environment that the trusted verifier may not exist. This paper proposes a mutual attestation protocol that is suitable for sensor networks by using SWATT(Software-based ATTestation) technique. In the proposed protocol, sensor nodes periodically notify its membership to neighbor nodes and carry out mutual attestation procedure with neighbor nodes by using SWATT technique. With the proposed protocol, verification device detects the sensor nodes compromised by malicious attacks in the sensor network environments without trusted verifier and the sensor networks can be composed of only the verified nodes.

Analysis on Security Vulnerabilities of a Biometric-based User Authentication Scheme for Wireless Sensor Networks (무선 센서 네트워크를 위한 생체 정보 기반 사용자 인증 스킴의 보안 취약점 분석)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.147-153
    • /
    • 2014
  • The numerous improved schemes of remote user authentication based on password have been proposed in order to overcome the security weakness in user authentication process. Recently, some of biometric-based user authentication schemes to use personal biometric information have been introduced and they have shown the relatively higher security and the enhanced convenience as compared to traditional password-based schemes. These days wireless sensor network is a fundamental technology in face of the ubiquitous era. The wireless sensor networks to collect and process the data from sensor nodes in increasing high-tech applications require important security issues to prevent the data access from the unauthorized person. Accordingly, the research to apply to the user authentication to the wireless sensor networks has been under the progress. In 2010, Yuan et al. proposed a biometric-based user authentication scheme to be applicable for wireless sensor networks. Yuan et al. claimed that their scheme is effectively secure against the various security flaws including the stolen verifier attack. In this paper, author will prove that Yuan et al.'s scheme is still vulnerable to the password guessing attack, user impersonation attack and the replay attack, by analyzing their security weakness.

Detecting Intrusion in IP-Based Ubiquitous Sensor Networks (IP 기반 유비쿼터스 센서 네트워크에서의 침입 탐지)

  • Amin, Syed Obaid;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.134-137
    • /
    • 2008
  • A novel Intrusion Detection and Response System (IDRS) for IP based Ubiquitous Sensor Networks (IP-USN) is proposed. According to the best of our knowledge this is the first security framework for any kind of IP based sensor devices. The proposed scheme is fast, lightweight in terms of computation and memory, which make it appropriate for resource constrained sensor devices.

  • PDF

Analysis on Security Vulnerabilities of a Password-based User Authentication Scheme for Hierarchical Wireless Sensor Networks (계층적 무선 센서 네트워크를 위한 패스워드 기반 사용자 인증 스킴의 보안 취약점 분석)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • The numerous improved schemes of user authentication based on password have been proposed in order to prevent the data access from the unauthorized person. The importance of user authentication has been remarkably growing in the expanding application areas of wireless sensor networks. Recently, emerging wireless sensor networks possesses a hierarchy among the nodes which are divided into cluster heads and sensor nodes. Such hierarchical wireless sensor networks have more operational advantages by reducing the energy consumption and traffic load. In 2012, Das et al. proposed a user authentication scheme to be applicable for the hierarchical wireless sensor networks. Das et al. claimed that their scheme is effectively secure against the various security flaws. In this paper, author will prove that Das et al.'s scheme is still vulnerable to man-in-the-middle attack, password guessing/change attack and does not support mutual authentication between the user and the cluster heads.

SEC Approach for Detecting Node Replication Attacks in Static Wireless Sensor Networks

  • Sujihelen, L.;Jayakumar, C.;Senthilsingh, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2447-2455
    • /
    • 2018
  • Security is more important in many sensor applications. The node replication attack is a major issue on sensor networks. The replicated node can capture all node details. Node Replication attacks use its secret cryptographic key to successfully produce the networks with clone nodes and also it creates duplicate nodes to build up various attacks. The replication attacks will affect in routing, more energy consumption, packet loss, misbehavior detection, etc. In this paper, a Secure-Efficient Centralized approach is proposed for detecting a Node Replication Attacks in Wireless Sensor Networks for Static Networks. The proposed system easily detects the replication attacks in an effective manner. In this approach Secure Cluster Election is used to prevent from node replication attack and Secure Efficient Centralized Approach is used to detect if any replicated node present in the network. When comparing with the existing approach the detection ratio, energy consumption performs better.

A Revised Timing-sync Protocol for Sensor Networks by a Polling Method

  • Bae, Shi-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2015
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol for WSN(wireless sensor networks), was developed to provide higher synchronization accuracy and energy efficiency. So, TPSN's approach has been referenced by so many other WSN synchronization schemes till now. However, TPSN has a collision problem due to simultaneous transmission among competing nodes, which causes more network convergence delay for a network-wide synchronization. A Polling-based scheme for TPSN is proposed in this paper. The proposed scheme not only shortens network-wide synchronization time of TPSN, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.

A New Group Key Management Protocol for WSN

  • Gerelbayar, Tegshbayar;Lee, Sang-Min;Park, Jong-Sou
    • Convergence Security Journal
    • /
    • v.8 no.1
    • /
    • pp.143-152
    • /
    • 2008
  • Sensor networks have a wide spectrum of military and civil applications, particularly with respect to security and secure keys for encryption and authentication. This thesis presents a new centralized approach which focuses on the group key distribution with revocation capability for Wireless Sensor Networks. We propose a new personal key share distribution. When utilized, this approach proves to be secure against k-number of illegitimate colluding nodes. In contrast to related approaches, our scheme can overcome the security shortcomings while keeping the small overhead requirements per node. It will be shown that our scheme is unconditionally secure and achieves both forward secrecy and backward secrecy. The analysis is demonstrated in terms of communication and storage overheads.

  • PDF

Impersonation Attacks on Anonymous User Authentication and Key Agreement Scheme in Wireless Sensor Networks (무선센서네트워크에서 익명의 사용자 인증과 키동의 기법에 대한 가장 공격)

  • Choi, Hae-Won;Kim, Hyunsung
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.287-293
    • /
    • 2016
  • Wireless sensor networks (WSNs) have many applications and are deployed in a wide variety of areas. They are often deployed in potentially adverse or even hostile environment so that there are concerns on security issues in these WSNs. Recently, an anonymous user authentication and key agreement scheme (AUAKAS) was proposed based on symmetric cryptosystem in WSNs. It is claimed in AUAKAS that it assures security against different types of attacks including impersonation attacks. However, this paper shows that AUAKAS does not cope from user impersonation attack and gateway impersonation attack from the legally registered user on the gateway. The security analysis could guide the required features of the security scheme to be satisfied.