• Title/Summary/Keyword: sensor networks security

Search Result 363, Processing Time 0.023 seconds

RPIDA: Recoverable Privacy-preserving Integrity-assured Data Aggregation Scheme for Wireless Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5189-5208
    • /
    • 2015
  • To address the contradiction between data aggregation and data security in wireless sensor networks, a Recoverable Privacy-preserving Integrity-assured Data Aggregation (RPIDA) scheme is proposed based on privacy homomorphism and aggregate message authentication code. The proposed scheme provides both end-to-end privacy and data integrity for data aggregation in WSNs. In our scheme, the base station can recover each sensing data collected by all sensors even if these data have been aggregated by aggregators, thus can verify the integrity of all sensing data. Besides, with these individual sensing data, base station is able to perform any further operations on them, which means RPIDA is not limited in types of aggregation functions. The security analysis indicates that our proposal is resilient against typical security attacks; besides, it can detect and locate the malicious nodes in a certain range. The performance analysis shows that the proposed scheme has remarkable advantage over other asymmetric schemes in terms of computation and communication overhead. In order to evaluate the performance and the feasibility of our proposal, the prototype implementation is presented based on the TinyOS platform. The experiment results demonstrate that RPIDA is feasible and efficient for resource-constrained sensor nodes.

Analyses of additive Crypto-module Architecture for a Sensor Network (센서 네트워크를 위한 부가적인 암호모듈의 구조 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.795-798
    • /
    • 2005
  • In this paper, we analyses of additive crypto-module architecture for a sensor network. Recent research in sensor networks has raised security issues for small embedded devices. Security concerns are motivated by the development of a large number of sensor devices in the field. Limitations in processing power, battery life, communication bandwidth and memoryconstrain devices. A mismatch between wide arithmetic for security and embedded data buscombined with lack of certain operations. Then, we compared the architecture of crypto-module in this paper.

  • PDF

ID-based Sensor Node Authentication for Multi-Layer Sensor Networks

  • Sung, Soonhwa;Ryou, Jaecheol
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • Despite several years of intense research, the security and cryptography in wireless sensor networks still have a number of ongoing problems. This paper describes how identification (ID)-based node authentication can be used to solve the key agreement problem in a three-layer interaction. The scheme uses a novel security mechanism that considers the characteristics, architecture, and vulnerability of the sensors, and provides an ID-based node authentication that does not require expensive certificates. The scheme describes the routing process using a simple ID suitable for low power and ID exposure, and proposes an ID-based node authentication. This method achieves low-cost communications with an efficient protocol. Results from this study demonstrates that it improves routing performance under different node densities, and reduces the computational cost of key encryption and decryption.

ZigBee Security Using Attribute-Based Proxy Re-encryption

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.343-348
    • /
    • 2012
  • ZigBee Network is enabling technology for home automation, surveillance and monitoring system. For better secure network environment, secure and robust security model is important. The paper proposes an application, attribute-based proxy re-encryption on ZigBee networks. The method can distribute the authority to designated sensor nodes to decrypt re-encrypted ciphertext with associated attributes. However, a previous method is required to compute complex pairing operations. The high complexity is not suited to low resource device sensor networks, and it does not provide routing security either. To resolve these problems, we present a novel mechanism. The method can reduce overhead by imposing overhead to full function devices and ensure routing paths as well.

Dynamic Session Key based Pairwise Key Management Scheme for Wireless Sensor Networks

  • Premamayudu, B;Rao, Koduganti Venkata;Varma, P. Suresh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5596-5615
    • /
    • 2016
  • Security is one of the major challenges in the Wireless Sensor Networks (WSNs). WSNs are more vulnerable to adversarial activities. All cryptographic security services indirectly depend on key management. Symmetric key management is the best key establishment process for WSNs due to the resource constraints of the sensors. In this paper, we proposed dynamic session key establishment scheme based on randomly generated nonce value and sensor node identity, in which each sensor node is equipped with session key on expire basis. The proposed scheme is compare with five popular existing key management systems. Our scheme is simulated in OMNET++ with MixiM and presented experimental results. The analytical study and experimental results show the superiority of the proposed scheme over the existing schemes in terms of energy, storage, resilience and communication overhead.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

An Energy Efficient Group-Based Cluster Key Management for Large Scale Sensor Networks (대규모 센서 네트워크에서 그룹을 기반으로 한 에너지 효율적인 클러스터키 관리 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5487-5495
    • /
    • 2012
  • The important issue that applies security key are secure rekeying, processing time and cost reduction. Because of sensor node's limited energy, energy consumption for rekeying affects lifetime of network. Thus it is necessary a secure and efficient security key management method. In this paper, I propose an energy efficient group-based cluster key management (EEGCK) in the large scale sensor networks. EEGCK uses five security key for efficient key management and different polynomial degree using security fitness function of sector, cluster and group is applied for rekeying and security processing. Through both analysis and simulation, I also show that proposed EEGCK is better than previous security management method at point of network energy efficiency.

Application of the Recursive Contract Net Protocol for the Threshold Value Determination in Wireless Sensor Networks (무선 센서 네트워크에서 경계값 결정을 위한 재귀적 계약망 프로토콜의 적용)

  • Seo, Hee-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • In ubiquitous sensor networks, sensor nodes can be compromised by an adversary since they are deployed in hostile environments. False sensing reports can be injected into the network through these compromised nodes, which may cause not only false alarms but also the depletion of limited energy resource in the network. In the security solutions for the filtering of false reports, the choice of a security threshold value which determines the security level is important. In the existing adaptive solutions, a newly determined threshold value is broadcasted to the whole nodes, so that extra energy resource may be consumed unnecessarily. In this paper, we propose an application of the recursive contract net protocol to determine the threshold value which can provide both energy efficiency and sufficient security level. To manage the network more efficiently, the network is hierarchically grouped, and the contract net protocol is applied to each group. Through the protocol, the threshold value determined by the base station using a fuzzy logic is applied only where the security attack occurs on.

Teen Based Secure Group Communication Scheme for Wireless Sensor Networks (무선 센서네트워크를 위한 TEEN 기반의 안전한 그룹통신 기법)

  • Seo, Il-Soo
    • Convergence Security Journal
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • It is very difficult to apply previous security protocols to WSNs(Wireless Sensor Networks) directly because WNSs have resource constrained characteristics such as a low computing ability, power, and a low communication band width. In order to overcome the problem, we proposes a secure group communication scheme applicable to WSNs. The proposed scheme is a combined form of the TEEN(Threshold sensitive Energy Efficient sensor Network protocol) clustering based hierarchical routing protocol and security mechanism, and we assume that WSNs are composed of sensor nodes, cluster headers, and base stations. We use both private key and public key cryptographic algorithms to achieve an enhanced security and an efficient key management. In addition, communications among sensor nodes, cluster headers, and base stations are accomplished by a hierarchical tree architecture to reduce power consumption. Therefore, the proposed scheme in this paper is well suited for WSNs since our design can provide not only a more enhanced security but also a lower power consumption in communications.

  • PDF

A Study on the Intrusion Detection System's Nodes Scheduling Using Genetic Algorithm in Sensor Networks (센서네트워크에서 유전자 알고리즘을 이용한 침입탐지시스템 노드 스케줄링 연구)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2171-2180
    • /
    • 2011
  • Security is a significant concern for many sensor network applications. Intrusion detection is one method of defending against attacks. However, standard intrusion detection techniques are not suitable for sensor networks with limited resources. In this paper, propose a new method for selecting and managing the detect nodes in IDS(intrusion detection system) for anomaly detection in sensor networks and the node scheduling technique for maximizing the IDS's lifetime. Using the genetic algorithm, developed the solutions for suggested optimization equation and verify the effectiveness of proposed methods by simulations.