• Title/Summary/Keyword: sensor model design

Search Result 538, Processing Time 0.036 seconds

Sensor Node Design based on State Transition Model (상태천이모델 기반의 센서 노드 설계)

  • Shin, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1357-1368
    • /
    • 2017
  • Sensor networks are used in various fields such as marine, defense, and smart home etc. Among the components of the sensor network, the sensor node collects sensor data, as one of the representative sensor network roles, and the sensor node makes a greate influence on the overall performance of the sensor network. Therefore, how to design the sensor node is an important issue in the sensor network field. However, the research on the sensor network architecture suitable for the sensor network installation environment has been made more important than the research on how to configure the sensor node. In this paper, we propose to identify elements to be considered for designing a sensor node that makes a large influence on the performance of the sensor network, and to easily implement the sensor node through the state transition model based on these elements.

Design and Implementation of Sensor Registry Data Model for IoT Environment (IoT 환경을 위한 센서 레지스트리 데이터 모델의 설계 및 구현)

  • Lee, Sukhoon;Jeong, Dongwon;Jung, Hyunjun;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.221-230
    • /
    • 2016
  • With emerging the Internet of Things (IoT) paradigm, the sensor network and sensor platform technologies have been changed according to exploding amount of sensors. Sensor Registry System (SRS) as a sensor platform is a system that registers and manages sensor metadata for consistent semantic interpretation in heterogeneous sensor networks. However, the SRS is unsuitable for the IoT environment. Therefore, this paper proposes sensor registry data model to register and manager sensor information in the IoT environment. We analyze Semantic Sensor Network Ontology (SSNO) for improving the existed SRS, and design metamodel based on the analysis result. We also build tables in a relational database using the designed metamodel, then implement SRS as a web application. This paper applies the SSNO and sensor ontology examples with translating into the proposed model in order to verify the suitability of the proposed sensor registry data model. As the evaluation result, the proposed model shows abundant expression of semantics by comparison with existed models.

Sensor Model Design of Range Sensor Based Probabilistic Localization for the Autonomous Mobile Robot (자율 주행 로봇의 확률론적 자기 위치 추정기법을 위해 거리 센서를 이용한 센서 모델 설계)

  • Kim, Kyung-Rock;Chung, Woo-Jin;Kim, Mun-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.27-29
    • /
    • 2004
  • This paper presents a sensor model design based on Monte Carlo Localization method. First, we define the measurement error of each sample using a map matching method by 2-D laser scanners and a pre-constructed grid-map of the environment. Second, samples are assigned probabilities due to matching errors from the gaussian probability density function considered of the sample's convergence. Simulation using real environment data shows good localization results by the designed sensor model.

  • PDF

An Energy Consumption Model for Time Hopping IR-UWB Wireless Sensor Networks

  • Hoque, M.E.;Khan, M.A.;Parvez, A.Al;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.316-324
    • /
    • 2007
  • In this paper we proposed an energy consumption model for IR-UWB wireless sensor networks. The model takes the advantages of PHY-MAC cross layer design, and we used slotted and un-slotted sleeping protocols to compare the energy consumption. We addressed different system design issues that are responsible to energy consumption and proposed an optimum model for the system design. We expect the slotted sleeping will consume less energy for bursty load than that of the un-slotted one. But if we consider latency, the un-slotted sleeping model performs better than the slotted sleeping case.

Design Model of Intensity Modulation Type Displacement sensor Using Step-index Multimode Optical Fiber (스텝 인덱스 멀티모드 광섬유를 이용한 광강도 변조방식 변위센서 설계모델 연구)

  • Shin, Woo-Cheol;Hong, Jun-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.500-506
    • /
    • 2006
  • An optical fiber displacement sensor has the advantages of relatively simplicity, cheap, small probe size and immunity against environmental perturbation. The working principle of the sensor is based on the intensity modulation that is detection light intensity reflecting from the surface being measured. This paper presents the mathematical model of displacement measurement mechanism of this sensor type. The theoretical and experimental data are compared to verify the model in describing the realistic approach to sensor design. Finally, the analysis results show that displacement response characteristics such as sensitivity, measuring range are easily modified by principal design parameters such as magnitude of optical Power, diameter of optical fiber core and distance between transmitting fiber and receiving fiber.

Design Optimization of Bracket for Wear Sensor of Automobile Brake Pads Based on Dynamic Kriging Surrogate Model (자동차 브레이크 패드 마모량 측정센서 브라켓의 다이나믹크리깅 대리모델 기반 설계최적화)

  • Jun-Yeong Jeong;Jung Joo Yoo;Kyung Seok Byun;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.95-101
    • /
    • 2024
  • This paper introduces an optimized design for a sensor bracket used to measure the wear amount of an automobile brake pad, based on a dynamic kriging surrogate model. During testing, the temperature of the brake pad can increase beyond 600℃, which often causes sensor malfunction. Therefore, it is essential to optimize the shape of the sensor bracket to minimize heat transfer. To reduce the computational cost of the optimization, the heat-transfer simulation is replaced by a dynamic kriging surrogate model. Dynamic kriging utilizes the best combination of correlation and basis functions and constructs an accurate surrogate model. Following optimization, the temperature of the sensor position decreases by 7.57%. The results from the surrogate model under optimum conditions are verified by a heat-transfer simulation, and the design optimization using a surrogate model is found to be effective.

Vibration Control of Beam using Distributed PVDF Sensor and PZT Actuator (분포형 압전필름 감지기와 압전세라믹 작동기를 이용한 보의 진동 제어)

  • 유정규;박근영;김승조
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.967-974
    • /
    • 1997
  • Distributed piezoeletric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF have been used in this study, the former as an actuator and the latter as a sensor for the integrated structure. We have optimized the position and the size of the PZT actuator and the electrode shape of the PVDF sensor. Finite element method is used to model the structure and the optimized actuators, we have designed the active electrode width of the PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Model control forces for the residual (uncontrolled) modes have been minimized during the sensor design to minimize the observation spill-over. Genetic algorithm and sequential quadratic programming technique have been utilized as an optimization scheme. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

Optimal Angle Error Reduction of Magnetic Position Sensor by 3D Finite Element Method

  • Kim, Ki-Chan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic position sensor using hall effect elements. The angle detection simulation for the magnetic position sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from permanent magnet in the air-gap in the vicinity of hall effect elements. For the Taguchi method, three design parameters related to position of hall effect elements and shape of back yoke are selected. The characteristics of optimal magnetic position sensor are compared with those of original one in terms of simulation as well as experiment. Finally, the performances of the motor adopting original model and optimal model are represented for the purpose of verification of motor performance due to signals from magnetic position sensor.

A Study of Sensor Reasoning for the CBM+ Application in the Early Design Stage (CBM+ 적용을 위한 설계초기단계 센서선정 추론 연구)

  • Shin, Baek Cheon;Hur, Jang Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2022
  • For system maintenance optimization, it is necessary to establish a state information system by CBM+ including CBM and RCM, and sensor selection for CBM+ application requires system process for function model analysis at the early design stage. The study investigated the contents of CBM and CBM+, analyzed the function analysis tasks and procedures of the system, and thus presented a D-FMEA based sensor selection inference methodology at the early stage of design for CBM+ application, and established it as a D-FMEA based sensor selection inference process. The D-FMEA-based sensor inference methodology and procedure in the early design stage were presented for diesel engine sub assembly.

Selection and Verification of 3D Finite Element Method Model for Silicone Foot Sensor with Low Detection Pressure (낮은 감지 압력신호 값을 가지는 실리콘 족적 센서에 대한 3차원 유한요소 해석 모델 선정 및 검증)

  • Seong, Byuck Kyung;Seo, Hyung Kyu;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1299-1307
    • /
    • 2014
  • In this work, an appropriate analysis model of a precise foot sensor with low detection pressure capability under a low range of variation in the dimensional variables was proposed. With a simple two-dimensional model, it was found that a remarkably high error level sometimes occurred between the analysis and experimental results. In order to overcome the error and improve the performance, a three-dimensional model was introduced, and the detection pressure and sensor characteristics were compared with those of the experimental results, which showed its enhanced performance with less error and higher precision.