• Title/Summary/Keyword: sensor deployment

Search Result 238, Processing Time 0.026 seconds

Sensor Node Deployment in Wireless Sensor Networks Based on Tabu Search Algorithm (타부 서치 알고리즘 기반의 무선 센서 네트워크에서 센서 노드 배치)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1084-1090
    • /
    • 2015
  • In this paper, we propose a Tabu search algorithm to efficiently deploy the sensor nodes for maximizing the network sensing coverage in wireless sensor networks. As the number of the sensor nodes in wireless sensor networks increases, the amount of calculation for searching the solution would be too much increased. To obtain the best solution within a reasonable execution time in a high-density network, we propose a Tabu search algorithm to maximize the network sensing coverage. In order to search effectively, we propose some efficient neighborhood generating operations of the Tabu search algorithm. We evaluate those performances through some experiments in terms of the maximum network sensing coverage and the execution time of the proposed algorithm. The comparison results show that the proposed algorithm outperforms other existing algorithms.

A Study on the Deployment of a Sea Based Sensor Platform for the Detection of a SLBM (잠수함 발사 탄도미사일 탐지를 위한 해상 센서플랫폼의 배치에 관한 연구)

  • Kim, Jiwon;Kwon, Yong Soo;Kim, Namgi;Kim, Dong Min;Park, Young Han
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.363-369
    • /
    • 2015
  • This paper describes deployment of a sea based sensor platform for the detection of a submarine launched ballistic missile (SLBM). Recently, North Korea successfully conducted the underwater launching test of the SLBM, which will seriously threaten the global security. To defend these threats successfully, a sensor platform of the ballistic missile defense (BMD) should be deployed in the area of high detection probability of the missile. The maximum detection range characteristics of the typical radar sensor system, however, depend on the radar cross section (RCS) and flight trajectories of the target. In this point of view, this work analyzed the flight trajectories based on the tactics and calculated the RCS of the SLBM. In addition, sea based sensor platform position is proposed from the analysis of the detection time.

Wireless Sensor Network for Wildfire Monitoring (산불 감시를 위한 무선 센서네트워크)

  • Sohn, Jung-Man;Seok, Chang-Ho;Park, Whang-Jong;Chang, Yu-Sik;Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.846-851
    • /
    • 2007
  • The wireless sensor network is one of the most practical and cost-effective solutions for monitoring systems covering wild and wide area such as wildfire monitoring. However, the RF distance between sensor nodes is very short due to the need of low power consumption of the sensor node, so the number of sensor nodes to be deployed in the target area is more than tens of thousands. In this paper, we design and analyze the deployment issues as well as re-deployment problem occurred when the battery is exhausted. We also propose the needs and solutions for coverage problem in dynamic deployment. By the experimental evaluations, we analyze the packet success ratio between sensor nodes under various environments such as obstacles and variable distances.

A versatile software architecture for civil structure monitoring with wireless sensor networks

  • Flouri, Kallirroi;Saukh, Olga;Sauter, Robert;Jalsan, Khash Erdene;Bischoff, Reinhard;Meyer, Jonas;Feltrin, Glauco
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.209-228
    • /
    • 2012
  • Structural health monitoring with wireless sensor networks has received much attention in recent years due to the ease of sensor installation and low deployment and maintenance costs. However, sensor network technology needs to solve numerous challenges in order to substitute conventional systems: large amounts of data, remote configuration of measurement parameters, on-site calibration of sensors and robust networking functionality for long-term deployments. We present a structural health monitoring network that addresses these challenges and is used in several deployments for monitoring of bridges and buildings. Our system supports a diverse set of sensors, a library of highly optimized processing algorithms and a lightweight solution to support a wide range of network runtime configurations. This allows flexible partitioning of the application between the sensor network and the backend software. We present an analysis of this partitioning and evaluate the performance of our system in three experimental network deployments on civil structures.

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

On Design Patterns for Sensor Networks

  • Amin, Syed Obaid;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1535-1537
    • /
    • 2007
  • A design pattern is a general solution to a commonly occurring problem. Design patterns have proven highly effective in representing, transferring, and applying the design knowledge in many engineering disciplines. However, these patterns have not addressed sensor network specifically. With a growth of sensors and sensor networks, and considering their profound applicability, there is a crucial need to articulate ones experience of application development or deployment of sensor nodes in the form of design patterns to avoid the future mistakes. This paper discusses the same issue and show applicability of design patterns in sensor networks.

Efficient Node Deployment Algorithm for Sequence-Based Localization (SBL) Systems (시퀀스 기반 위치추정 시스템을 위한 효율적 노드배치 알고리즘)

  • Park, Hyun Hong;Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.658-663
    • /
    • 2018
  • In this paper, we consider node deployment algorithms for the sequence-based localization (SBL) which is recently employed for in-door positioning systems, Whereas previous node selection or deployment algorithms seek to place nodes at centrold of the region where more targets are likely to be found, we observe that the boundaries dividing such regions can be good locations for the nodes in SBL systems. Motivated by this observation, we propose an efficient node deployment algorithm that determines the boundaries by using the well-known K-means algorithm and find the potential node locations based on the bi-section method for low-complexity design. We demonstrate through experiments that the proposed algorithm achieves significant localization performance over random node allocation with a substantially reduced complexity as compared with a full search.