
 

 

제27회 한국정보처리학회 춘계학술발표대회 논문집 제14권 제1호 (2007. 5) 

 

 

1535 

On Design Patterns for Sensor Networks 
 

Syed Obaid Amin and Choong Seon Hong 

Dept. of Computer Engineering, Kyung Hee University 

 

요       약 

A design pattern is a general solution to a commonly occurring problem. Design patterns have proven highly 

effective in representing, transferring, and applying the design knowledge in many engineering disciplines. 

However, these patterns have not addressed sensor network specifically. With a growth of sensors and sensor 

networks, and considering their profound applicability, there is a crucial need to articulate ones experience of 

application development or deployment of sensor nodes in the form of design patterns to avoid the future mistakes. 

This paper discusses the same issue and show applicability of design patterns in sensor networks. 

 

1. Introduction 

Shared vocabulary is a basic ingredient of any science or 

engineering discipline. It helps people of the same domain to 

exchange ideas more conveniently and easily. This 

vocabulary makes possible to explain the whole scenario with 

a single word.  Design patterns, first introduced by 

Christopher Alexander [3], are a way to enrich this lexicon. 

According to Alexander, solutions of the daily life problems 

have a specific pattern which may be applied repeatedly to 

solve a problem. In design patterns, we articulate ones 

experience in a precise set of suggestions in the form of 

catalog. This catalog suggests that what measures should be 

taken and what steps should be avoided to complete any 

specific task. So that others do not make the same mistakes 

again and again and don’t invest their time to rethink on the 

same problem. As it is said, good judgment comes from good 

experience, these experienced enriched catalogues help 

novice user to get the deeper insight of their relative domains 

within short period. Alexander proposed design patterns for 

roads, bridges and architectural world but his statement lies 

true for almost every aspect of life. Therefore, since its 

advent, design patterns have proven useful in many 

engineering disciplines such as Software Engineering, 

Business Information Processing, and Architectural Design 

etc.  

With the inception of sensor networks, a new class of 

research topics is unleashed.  Many of the differences lie 

almost in every layer of sensor networks as compare to 

traditional TCP/IP networks. Since sensor networks are in 

their evolutionary state, most of the research focus on the 

bottom four layers i.e. Physical, Link, Network and Transport 

layers to provide a high level of compatibility to the future 

applications of sensor networks and leave the application 

layer unattended. As sensor networks are application specific, 

we cannot find a generalized way of application development 

in them. However, with a growth of these miniaturized 

devices and considering their profound applicability, there is 

a crucial need of articulation of ones experience, of 

application development or deployment of sensor nodes, in 

form of catalog to avoid the future mistakes.   

This paper elucidates the use of design patterns in sensor 

networks.  The following section outlines the possible 

classification of design patterns for sensor networks.  An 

issue which is still in veil and haven’t got much attention so 

far. 

2. Classifications 

2.1. Identification and documentation of existing design 

patterns: 

 

Creating a design pattern catalog can be divided in to two 

steps, identification of existing patterns in sensor network 

and document them in design pattern way. However, if this 

step is failed, the next step is to propose a new pattern and 

document them eloquently. Both of these issues require a 

great deal of research and would help novice user to grasp the 

key design issues more easily and swiftly.  

The identification of these patterns could be at any level, 

within a sensor node, within the object(s) controlling the 

sensor nodes or at a system as a whole. For example, sensor 

networks software applications have some different trends 

than general programming paradigm. Strict energy 

constraints and limited resources compel developers to write 

application-specific services. Although, specialized software 

solutions enable developers to build efficient systems, but on 

the other hand, they have to compromise the reusability of 

software components. Features like, late binding or 

polymorphism may also not available in today’s Sensor OS 

platform. The perfect example of this is TinyOS, in which 

interaction between components is defined at compile time 

rather at run time [2], as happens in OOP (Object Oriented 

Programming) realm. Therefore, it is difficult, although 

possible, for sensor network programmers to apply OOAD 

(Object Oriented Analysis and Design) or any other software 

engineering patterns easily and with an assurance that they 

will get the same results. These factors increase the need of a 

new set of design patterns specifically tailored for WSN 

(Wireless Sensor Networks). 

2.2 Application of patterns of other domain:  

Design patterns are not a new concept and have proven 

useful in many other engineering fields. Although sensor 

network have some specialized attributes, even then we can 

apply design patterns of other domains in sensor networks. 

For example, sensor networks posses some generalized 

properties of real time embedded systems. Issues which are 

common in both domains and have been resolved in real time 

embedded systems along with documentation can be very 

helpful for sensor networks as well. 



 

 

제27회 한국정보처리학회 춘계학술발표대회 논문집 제14권 제1호 (2007. 5) 

 

 

1536 

The evident use of design patterns is in OOAD (Object 

Oriented Analysis and Design) where they are used to 

manage the objects, their relationships and operations. The 

major work of this domain is by Erich Gamma et al. [1], 

commonly known as GoF Design patterns. In [1], they 

capture the experience in designing object-oriented software 

as design patterns. They named, explained, and evaluated 

important recurring designs in object-oriented systems and 

presented a catalog for OOAD.  

Being a member of a real world objects, each sensor can 

also be represented as an Object of OOP (Object Oriented 

Programming) realm. Each sensor does the same basic things 

– sensing the environment and responding it, which is 

analogous to the ‘methods’ of an object. Based on these 

actions sensor may alters its state as well which can be 

regarded as ‘attributes’ of an OOP object. Design patterns 

have proven their potential in the OOP domain; and during 

modeling if we regard each sensor as an OOP object then the 

application of similar patterns would enhance the 

management of sensor networks and we could come up with 

good sensor network design. Of course, not all of the design 

patterns of OOAD world are applicable in this scenario 

because some patterns deals with abstraction as well. 

However, a larger set of OOAD patterns could help us not 

only in application programming for sensor networks but also 

in the management and deployment of sensor networks. 

3. Design patterns for Sensor Networks: 

This paper mainly elaborates the applicability of the 

design patterns of other domain on sensor networks. Due to 

page limitation, we only present one design pattern in detail 

and briefly discuss few more design pattern in Section 4. In 

general, each pattern starts with the pattern name, follows 

with its intent and then outlines its motivation. The following 

example outlines the motivation with respect to the sensor 

networks. We believe that this is a succinct but self-

explanatory way of documenting one’s experience.  

3.1. Mediator: 

Intent: 

 

− “Define an object that encapsulates how a set of objects 

interact. Mediator promotes loose coupling by keeping 

objects from referring to each other explicitly, and it lets 

you vary their interaction independently.”[1] 

− Design an intercessor to decouple many peers. 

Motivation: 

Consider a multi agent system, an agent can be defined as 

a system which can perceive its environment through sensors 

and act upon it through effectors [5]. A multi agent system is 

a collection of these agents. Usually an agent is divided in to 

different components or modules according to their behavior 

to enhance reusability. However, such distribution of 

behavior can result in a structure with many connections 

between the various components and having too many 

interconnections tend to reduce the reusability again. 

Numerous inter-connections make it more difficult for a 

component to work without the support of others. In addition 

to that, making significant changes to the overall behavior of 

the system becomes unnecessarily difficult, since behavior is 

distributed among many modules. These problems can be 

avoided by encapsulating collective behavior in a separate 

mediator module.  The mediator controls and co-ordinates 

the interactions of the various modules within the agent. Each 

module is only required to know its mediator and all 

communication with other modules is done indirectly through 

this channel. The foremost advantages are localization of the 

overall behavior in one module and the system can easily 

change its behavior by modifying or replacing just the 

mediator module. 

Another example of mediator can be seen in smart 

ubiquitous environment where mediator contains the control 

logic for the entire system. When any new smart appliance is 

added to a system or any appliance requires a new rule the 

only place that will require modification would be mediator. 

Mediator pattern decouples all the appliances within the 

system from each other.  

Participants: 

 

Mediator:  An intermediary node/component or module 

which provides an interface for communicating with other 

nodes/components or modules 

Colleagues:  Each colleague communicates with its 

mediator whenever it would have otherwise communicated 

with another colleague. 

Applicable When: 

 

In sensor network scenario is applicable in following 

situations 

- When a set of modules communicate in well-defined 

but complex ways.  

- When it is difficult to reuse a module because it 

refers to and communicates with many other 

modules. 

Consequences: 

 

Mediator pattern allows system managers to vary and 

reuse Colleague and Mediator independently. It also 

simplifies the maintenance of the system and any new 

functionality can be added at mediator with out affecting 

colleagues. Moreover, mediator pattern can simplify the 

communication protocol by replacing many-to-many 

relationship to one-to-many relationship as it is easy to 

inspect one-to-many relationship. A drawback of the 

mediator pattern is that without proper design the mediator 

itself can become overly complex. 



 

 

제27회 한국정보처리학회 춘계학술발표대회 논문집 제14권 제1호 (2007. 5) 

 

 

1537 

Structure: 

 

 

Fig. 1. Mediator pattern 

 

4.  Few more patterns at a glance 

The intent of this paper is to introduce design patterns for 

sensor networks, a proven design strategy in many 

engineering fields and seems promising for sensor networks 

as well.  However above example, due to space limitation, 

just provides a gist of an idea and might not be able to prove 

the given claim. Therefore, this section very briefly describes 

few more patterns and how they can be useful for sensor 

networks.  

Facade: Facade pattern provides a simple interface of a 

complex system and enforce layering in the architecture. 

Facade pattern can be useful in many scenarios. For example, 

in smart ubiquitous environment, as soon as house owner 

puts his keychain on Smart key stand many related work such 

as turning on the lights, switching on the answering machine 

and so on, can be started as a sub layer. Facade makes 

subsystem easier to use by hiding complex interaction 

between different components of a given system and provide 

simplified view to its users. 

Chain of responsibility: This pattern is useful when we want 

to give a chance to more than one entity to handle a request. 

The intent of this pattern is to avoid coupling between the 

sender of a request and its receiver [1]. At network design 

level it can be useful when a user wants to know if some 

activity has been detected, so if one sensor has not detected 

any action, it can ask the next sensor, and then whichever 

sensor has detected the activity, it can respond. Within the 

sensor node, a vehicle may contain multiple sensors that can 

accomplish a given task. This pattern provides a way for the 

sensor to be selectable. 

Watchdog [4]: Another specialized observer pattern called 

Watchdog is also useful for very light weight sanity check, 

one of the sanity check patterns discussed by Douglas [4]. In 

the watchdog pattern, an object called a watchdog is signaled 

periodically by various objects in the system. The lightweigh

t nature of this pattern makes it a perfect candidate for 

sensors and sensor networks however, it has limited appl

icability. Specifically, it determines the health of the syst

em by receiving events within a specified time window. 

This is helpful in detecting hung system faults but not o

ther kinds of faults. Watchdogs are mainly used for time 

critical sensor network deployment i.e. the computations 

have a deadline by which they must be applied. If th

e computation occurs after that deadline, the result m

ay either be erroneous or irrelevant. It could be data 

as well that if is it valid after specific period or not. 

Watchdog provides a mean to apply these sanity chec

ks.The list of these patterns can goes up to many pages, in 

fact it requires a book for a complete discussion. This paper 

contributed to research community by introducing a proven 

design methodology for sensor networks along with its 

motivation. We also highlighted the possible research areas in 

this field and provided many examples to visualize the idea.  

As said above the pattern-based approach serves the purpose 

of providing a common language for expressing design 

knowledge across disciplines and design layers. It will also 

help the people of sensor network domain to describe the 

design decisions taken at various layers in terms of their 

associated pattern. Patterns can be technically precise; however, 

they do not adhere to a particular design language and offer a 

flexible medium for communication between system 

developers. 

5. Conclusions: 

In this paper, we introduced the concept of a design pattern 

for sensor networks. We envision that using design patterns 

leads to the systems which are scalable, modular, adaptable 

and understandable. Its use can have a profound impact on 

the way sensor networks are designed. This paper provides a 

pioneering work in this regard. This idea is still in 

evolutionary stages and needs a great deal of refinement. Due 

to space limitation, we are only able to provide a gist of an 

idea and discussed very few design patterns. Many useful and 

valuable patterns are left to be discussed and will be 

addressed in future papers. Patterns from real time systems 

like Recursive Containment Pattern, Hierarchical Control 

Pattern, and others can also be helpful for sensor networks 

[4].  This document is a result of our ongoing work and only 

talks about the applicability of the patterns, articulated for 

other domain, on sensor networks. However, our future work 

will not only discuss this issue but will also provide some 

new patterns specifically tailored for WSN. 

 

References 

 

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, 

“Design Patters: Elements of Reusable Object-Oriented 

Software”, Addison-Wesley, 1995. 

[2] David Gay, Philip Levis, and David Culler, "Software 

Design Patterns for TinyOS", ACM SIGPLAN/SIGBED 

2005 Conference on Languages, Compilers, and Tools for 

Embedded Systems (LCTES'05), Pages: 40 - 49, 2005. 

[3] Christopher Alexander, Sara Ishikawa, Murray Silverstein, 

Max Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel., 

“A Pattern Language”, Oxford University Press, New 

York, 1977. 

[4] Bruce Powel Douglass, “Real-Time Design Patterns: 

Robust Scalable Architecture for Real-Time Systems”, 

Addison Wesley Professional, 2002. 

[5] Stuart Russell and Peter Norvig, “Artificial Intelligence: A 

Modern Approach, Prentice Hall Series in AI”, New 

Jersey, Prentice Hall, 1995. 


