• Title/Summary/Keyword: sensor configuration

Search Result 479, Processing Time 0.031 seconds

Configuration of Actuator and Sensor Interface Bus Network using PLC

  • Luu, Hoang-Minh;Park, Young-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.318-322
    • /
    • 2014
  • A kind of field bus called Actuator and Sensor interface bus(AS-i) was designed in this paper. The configuration of AS-i network system used Application Specific Integrated Circuit(ASIC) SAP5S chip and PLC S7-200 station, which included CPU 224 and AS-i master module CP 243-2. We also created an example program for PLC S7-200 to control AS-i network. The fire and smoke detection system was made with AS-i network system that was designed. This system had got more advantages than other system such as number of stations, easy installation, wide working area, etc. And designed system can be used as a partner network for higher level field bus networks.

Smart Optical Fingerprint Sensor for Robust Fake Fingerprint Detection

  • Baek, Young-Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2017
  • In this paper, a smart optical fingerprint sensor technology that is robust against faked fingerprints. A new lens and prism accurately detect fingerprint ridges and valleys that are needed to express a fingerprint's intrinsic characteristics well. The proposed technology includes light path configuration and an optical fingerprint sensor that can effectively identify faked fingerprint features. Results of simulation show the smart optical fingerprint sensor classifies the characteristics of faked fingerprints made from silicone, gelatin, paper, and rubber, and show that the proposed technology has superior detection performance with faked fingerprints, compared to the existing infrared discrimination method.

Solid Electrochemical Method of Measuring Hydrogen Concentration with O2-/H+ Hetero-Ionic Junction

  • Chongook Park
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.63-69
    • /
    • 2024
  • A novel method for measuring hydrogen concentration is introduced, along with its working principle and a novel detection algorithm. This configuration requires no additional reference compartment for potentiometric electrochemical measurements; therefore, it is the most suitable for measuring dissolved hydrogen in the liquid phase. The sensor's electromotive force saturates at a certain point, depending on the hydrogen concentration during the heating process of the sensor operation. This dynamic temperature scanning method provides higher sensitivity than the constant temperature measurement method.

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

FDI performance Analysis of Inertial Sensors on Multiple Conic Configuration (다중 원추형으로 배치된 관성센서의 FDI 성능 분석)

  • Kim, Hyun Jin;Song, Jin Woo;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.943-951
    • /
    • 2015
  • Inertial sensors are important components of navigation system whose performance and reliability can be improved by specific sensor arrangement configuration. For the reliability of the system, Fault Detection and Isolation (FDI) is conducted by comparing each signal of arranged sensors and many arrangement configuration were suggested to optimize FDI performance of the system. In this paper, multiple conic configuration is suggested with optimal navigation condition and its FDI performance is analyzed by established Figure Of Merit (FOM) under the condition for navigation optimality. From FOM comparison, the multiple conic configuration is superior to former one in point of FDI.

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

Node scheduling algorithm for energy efficiency and delay reduction in mobile sensor networks (모바일 센서 망에서 효율적인 에너지 사용과 전송지연 감소를 위한 노드 스케쥴링 알고리즘)

  • Son, Jae-Hyun;Byun, Hee-Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.111-118
    • /
    • 2014
  • In mobile sensor networks, a large number of sensor nodes with battery powered are deployed randomly in a region. They monitor the environmental states and transmit data to its neighboring nodes. For mobile sensor networks, It is needed to maintain the connectivity autonomously among nodes as the sensor node moves. However, the existing works have focused on the energy savings in the fixed sensor networks. A specific algorithm considering node mobility is required in the mobile sensor networks. Along with energy efficiency, the transmission delay should be considered. In this paper, we propose an autonomous configuration scheme and a node scheduling algorithm when a moving node joins into the existing network. Through simulations, we show a superior performance of the proposed algorithm to the existing protocol.

Communication coverage-aware cluster head election algorithm for Hierarchical Wireless Sensor Networks (계층형 무선센서 네트워크에서 통신영역을 고려한 클러스터 헤드 선출 알고리즘)

  • Lee, Doo-Wan;Kim, Yong;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.527-530
    • /
    • 2010
  • WSN is composed of a lot of small sensors with the limited hardware resources. In WSN, at the initial stage, sensor nodes are randomly deployed over the region of interest, and self-configure the clustered networks by grouping a bunch of sensor nodes and selecting a cluster header among them. Specially, in WSN environment, in which the administrator's intervention is restricted, the self-configuration capability is essential to establish a power-conservative WSN which provides broad sensing coverage and communication coverage. In this paper, we propose a communication coverage-aware cluster head election algorithm for Herearchical WSNs which consists of communication coverage-aware of the Base station is the cluster head node is elected and a clustering.

  • PDF

Configuration and Characteristics of Fine Sun Sensor for Satellite (위성용 고정밀 태양센서 구성 및 특성)

  • Kim, Yong-Bok;Pank, Keun-Joo;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.87-93
    • /
    • 2011
  • FSSA(Fine Sun Sensor Assembly) is the important sensor for satellite attitude control. FSSA measures the direction of the sun's rays and determines whether the satellite is in the eclipse or not. FSSA for GEO Satellite is also used to acquire the attitude error information in the attitude control reference frame and acquire the Sun direction during transfer orbit or mission Process. This paper shows the configuration of Fine Sun Sensor for LEO and GEO Satellite and their principle of operation that angle measurement is obtained by using the transfer function which is the ratio of the difference between output currents of Solar Cell to the sum of all output currents.

The Elementary Study on the Development of a Sensor for Measurement of Steel Corrosion by Transient Electro-Magnetic (TEM) Method (TEM 법에 의한 철근 부식 측정 센서 개발에 대한 기초 연구)

  • 이상호;한정섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • In order to measure steel corrosion in mortar by a transient electro-magnetic (TEM) Method, the development of the sensors have been studied. The sensors were made of enamelled wire with diameter of 0.25mm and Acril. The sensor configuration was used as a coincident loop type. The secondary electro motive force(EMF) was measured with SIROTEM III. The accelerator was equipped with the SIROTEM III. The accelerator permits the transmitter to turn off approximately 10~15 times faster than normal. The high resolution time series used for very shallow or high resistivity investigation was selected. The steels were embedded in mortar which were made from sand : cement : water ratio of 2 : 1: 0.5. The mortar specimen was 50cm long, 20cm wide and 10cm thick. To investigate steel corrosion in mortar, the sensors used were with 2$\times$2$cm^2$(3, 6, 9$\Omega$), 3$\times$3$cm^2$(3, 6, 9$\Omega$) and 6$\times$6$cm^2$(3, 6, 9$\Omega$). The obtained result obtained showed that the sensor 8(6$\times$6$cm^2$, 6$\Omega$) was the proper sensor for the measurement of steel corrosion in mortar.

  • PDF